Xinyue Liu, Linlin Zong, Xianchao Zhang, Hongfei Lin
{"title":"主动半监督光谱聚类","authors":"Xinyue Liu, Linlin Zong, Xianchao Zhang, Hongfei Lin","doi":"10.1109/PAAP.2011.61","DOIUrl":null,"url":null,"abstract":"Spectral clustering is widely used in these years. Recently, methods that connect spectral clustering and semi-supervised clustering become popular. These methods improve the result through using constraint information in spectral clustering. Generally, there are two ways to select constrained information, one is random selection method and the other is active learning method. Here we focus on active learning methods. In this paper, we propose an active learning process, which considers the local and global information of dataset, and decide which constraint to choose by studying the change of eigenvectors.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Semi-supervised Spectral Clustering\",\"authors\":\"Xinyue Liu, Linlin Zong, Xianchao Zhang, Hongfei Lin\",\"doi\":\"10.1109/PAAP.2011.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral clustering is widely used in these years. Recently, methods that connect spectral clustering and semi-supervised clustering become popular. These methods improve the result through using constraint information in spectral clustering. Generally, there are two ways to select constrained information, one is random selection method and the other is active learning method. Here we focus on active learning methods. In this paper, we propose an active learning process, which considers the local and global information of dataset, and decide which constraint to choose by studying the change of eigenvectors.\",\"PeriodicalId\":213010,\"journal\":{\"name\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP.2011.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral clustering is widely used in these years. Recently, methods that connect spectral clustering and semi-supervised clustering become popular. These methods improve the result through using constraint information in spectral clustering. Generally, there are two ways to select constrained information, one is random selection method and the other is active learning method. Here we focus on active learning methods. In this paper, we propose an active learning process, which considers the local and global information of dataset, and decide which constraint to choose by studying the change of eigenvectors.