主动半监督光谱聚类

Xinyue Liu, Linlin Zong, Xianchao Zhang, Hongfei Lin
{"title":"主动半监督光谱聚类","authors":"Xinyue Liu, Linlin Zong, Xianchao Zhang, Hongfei Lin","doi":"10.1109/PAAP.2011.61","DOIUrl":null,"url":null,"abstract":"Spectral clustering is widely used in these years. Recently, methods that connect spectral clustering and semi-supervised clustering become popular. These methods improve the result through using constraint information in spectral clustering. Generally, there are two ways to select constrained information, one is random selection method and the other is active learning method. Here we focus on active learning methods. In this paper, we propose an active learning process, which considers the local and global information of dataset, and decide which constraint to choose by studying the change of eigenvectors.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Semi-supervised Spectral Clustering\",\"authors\":\"Xinyue Liu, Linlin Zong, Xianchao Zhang, Hongfei Lin\",\"doi\":\"10.1109/PAAP.2011.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral clustering is widely used in these years. Recently, methods that connect spectral clustering and semi-supervised clustering become popular. These methods improve the result through using constraint information in spectral clustering. Generally, there are two ways to select constrained information, one is random selection method and the other is active learning method. Here we focus on active learning methods. In this paper, we propose an active learning process, which considers the local and global information of dataset, and decide which constraint to choose by studying the change of eigenvectors.\",\"PeriodicalId\":213010,\"journal\":{\"name\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP.2011.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,光谱聚类技术得到了广泛的应用。近年来,将谱聚类和半监督聚类相结合的方法得到了广泛的研究。这些方法通过在谱聚类中使用约束信息来改进结果。一般有两种选择约束信息的方法,一种是随机选择方法,另一种是主动学习方法。在这里,我们关注的是主动学习方法。在本文中,我们提出了一种主动学习过程,它考虑了数据集的局部和全局信息,并通过研究特征向量的变化来决定选择哪个约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Semi-supervised Spectral Clustering
Spectral clustering is widely used in these years. Recently, methods that connect spectral clustering and semi-supervised clustering become popular. These methods improve the result through using constraint information in spectral clustering. Generally, there are two ways to select constrained information, one is random selection method and the other is active learning method. Here we focus on active learning methods. In this paper, we propose an active learning process, which considers the local and global information of dataset, and decide which constraint to choose by studying the change of eigenvectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信