K. G. Chittibabu, L. Li, X. Wang, J. Kumar, S. Tripathy
{"title":"基于噻吩的非线性光学发色团功能化环氧聚合物的电光应用","authors":"K. G. Chittibabu, L. Li, X. Wang, J. Kumar, S. Tripathy","doi":"10.1364/otfa.1997.thc.4","DOIUrl":null,"url":null,"abstract":"Polymeric materials present certain advantages over inorganic crystals for second-order nonlinear optical (NLO) applications because of their low dielectric constant, large optical nonlinearity, low cost, and ease of processability. Stable NLO polymeric materials are potential candidates for electro-optic (EO) devices such as high bandwidth electro-optic modulators [1], optical interconnects [2], and fiber optic gyros [3]. Second-order NLO properties in polymers are present when the chromophores are aligned in a non-centrosymmetric manner. Chromophores with enhanced NLO susceptibilities can be obtained by increasing electron-donating and/or accepting effects [4], by extending the conjugation length between the donor and acceptor groups [5] and by replacing the phenyl moieties in the chromophores with thiophene moieties [6]. Efforts were made by our group [7] and various other groups [6, 8] to synthesize and optimize the properties of the chromophore functionalized polymers with high optical nonlinearity. Jen and coworkers synthesized a variety of thiophene based chromophores with high optical nonlinearity, 'μβ' [6, 8]. Many of these chromophores, when doped in a polymer matrix exhibited an electro-optic value greater than 20 pm/V. Marder and coworkers studied the effect of strong acceptors in NLO chromophores and have found that an 'r33' value of 55 pm/V at 1.313 μm is realizable with some of these chromophore doped polycarbonate composites. However, most of these systems are of guest-host type, which limit the chromophore solubility as well as temporal stability of the poled order in the NLO chromophore-polymer composites.","PeriodicalId":378320,"journal":{"name":"Organic Thin Films for Photonics Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thiophene based Nonlinear Optical Chromophore functionalized Epoxy Polymers for Electro-Optic Applications\",\"authors\":\"K. G. Chittibabu, L. Li, X. Wang, J. Kumar, S. Tripathy\",\"doi\":\"10.1364/otfa.1997.thc.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric materials present certain advantages over inorganic crystals for second-order nonlinear optical (NLO) applications because of their low dielectric constant, large optical nonlinearity, low cost, and ease of processability. Stable NLO polymeric materials are potential candidates for electro-optic (EO) devices such as high bandwidth electro-optic modulators [1], optical interconnects [2], and fiber optic gyros [3]. Second-order NLO properties in polymers are present when the chromophores are aligned in a non-centrosymmetric manner. Chromophores with enhanced NLO susceptibilities can be obtained by increasing electron-donating and/or accepting effects [4], by extending the conjugation length between the donor and acceptor groups [5] and by replacing the phenyl moieties in the chromophores with thiophene moieties [6]. Efforts were made by our group [7] and various other groups [6, 8] to synthesize and optimize the properties of the chromophore functionalized polymers with high optical nonlinearity. Jen and coworkers synthesized a variety of thiophene based chromophores with high optical nonlinearity, 'μβ' [6, 8]. Many of these chromophores, when doped in a polymer matrix exhibited an electro-optic value greater than 20 pm/V. Marder and coworkers studied the effect of strong acceptors in NLO chromophores and have found that an 'r33' value of 55 pm/V at 1.313 μm is realizable with some of these chromophore doped polycarbonate composites. However, most of these systems are of guest-host type, which limit the chromophore solubility as well as temporal stability of the poled order in the NLO chromophore-polymer composites.\",\"PeriodicalId\":378320,\"journal\":{\"name\":\"Organic Thin Films for Photonics Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Thin Films for Photonics Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/otfa.1997.thc.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Thin Films for Photonics Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/otfa.1997.thc.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thiophene based Nonlinear Optical Chromophore functionalized Epoxy Polymers for Electro-Optic Applications
Polymeric materials present certain advantages over inorganic crystals for second-order nonlinear optical (NLO) applications because of their low dielectric constant, large optical nonlinearity, low cost, and ease of processability. Stable NLO polymeric materials are potential candidates for electro-optic (EO) devices such as high bandwidth electro-optic modulators [1], optical interconnects [2], and fiber optic gyros [3]. Second-order NLO properties in polymers are present when the chromophores are aligned in a non-centrosymmetric manner. Chromophores with enhanced NLO susceptibilities can be obtained by increasing electron-donating and/or accepting effects [4], by extending the conjugation length between the donor and acceptor groups [5] and by replacing the phenyl moieties in the chromophores with thiophene moieties [6]. Efforts were made by our group [7] and various other groups [6, 8] to synthesize and optimize the properties of the chromophore functionalized polymers with high optical nonlinearity. Jen and coworkers synthesized a variety of thiophene based chromophores with high optical nonlinearity, 'μβ' [6, 8]. Many of these chromophores, when doped in a polymer matrix exhibited an electro-optic value greater than 20 pm/V. Marder and coworkers studied the effect of strong acceptors in NLO chromophores and have found that an 'r33' value of 55 pm/V at 1.313 μm is realizable with some of these chromophore doped polycarbonate composites. However, most of these systems are of guest-host type, which limit the chromophore solubility as well as temporal stability of the poled order in the NLO chromophore-polymer composites.