D. Farenick, Michelle McBurney
求助PDF
{"title":"利用算子系统对偶性的Toeplitz可分性、纠缠性和完全正性","authors":"D. Farenick, Michelle McBurney","doi":"10.1090/bproc/163","DOIUrl":null,"url":null,"abstract":"<p>A new proof is presented of a theorem of L. Gurvits [LANL Unclassified Technical Report (2001), LAUR–01–2030], which states that the cone of positive block-Toeplitz matrices with matrix entries has no entangled elements. The proof of the Gurvits separation theorem is achieved by making use of the structure of the operator system dual of the operator system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)^{(n)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n times n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\times n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> Toeplitz matrices over the complex field, and by determining precisely the structure of the generators of the extremal rays of the positive cones of the operator systems <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mtext>min</mml:mtext>\n </mml:mrow>\n </mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)^{(n)}\\otimes _{\\text {min}}\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mtext>min</mml:mtext>\n </mml:mrow>\n </mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)_{(n)}\\otimes _{\\text {min}}\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an arbitrary Hilbert space and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)_{(n)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the operator system dual of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)^{(n)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our approach also has the advantage of providing some new information concerning positive Toeplitz matrices whose entries are from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has infinite dimension. In particular, we prove that normal positive linear maps <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\">\n <mml:semantics>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are partially completely positive in the sense that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi Superscript left-parenthesis n right-parenthesis Baseline left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\psi ^{(n)}(x)</mml:ann","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toeplitz separability, entanglement, and complete positivity using operator system duality\",\"authors\":\"D. Farenick, Michelle McBurney\",\"doi\":\"10.1090/bproc/163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new proof is presented of a theorem of L. Gurvits [LANL Unclassified Technical Report (2001), LAUR–01–2030], which states that the cone of positive block-Toeplitz matrices with matrix entries has no entangled elements. The proof of the Gurvits separation theorem is achieved by making use of the structure of the operator system dual of the operator system <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)^{(n)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n times n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\times n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> Toeplitz matrices over the complex field, and by determining precisely the structure of the generators of the extremal rays of the positive cones of the operator systems <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:msub>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mtext>min</mml:mtext>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)^{(n)}\\\\otimes _{\\\\text {min}}\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msub>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mtext>min</mml:mtext>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)_{(n)}\\\\otimes _{\\\\text {min}}\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {H}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an arbitrary Hilbert space and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)_{(n)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the operator system dual of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)^{(n)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our approach also has the advantage of providing some new information concerning positive Toeplitz matrices whose entries are from <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {H}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> has infinite dimension. In particular, we prove that normal positive linear maps <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"psi\\\">\\n <mml:semantics>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\psi</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are partially completely positive in the sense that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"psi Superscript left-parenthesis n right-parenthesis Baseline left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\psi ^{(n)}(x)</mml:ann\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
引用
批量引用