利用算子系统对偶性的Toeplitz可分性、纠缠性和完全正性

D. Farenick, Michelle McBurney
{"title":"利用算子系统对偶性的Toeplitz可分性、纠缠性和完全正性","authors":"D. Farenick, Michelle McBurney","doi":"10.1090/bproc/163","DOIUrl":null,"url":null,"abstract":"<p>A new proof is presented of a theorem of L. Gurvits [LANL Unclassified Technical Report (2001), LAUR–01–2030], which states that the cone of positive block-Toeplitz matrices with matrix entries has no entangled elements. The proof of the Gurvits separation theorem is achieved by making use of the structure of the operator system dual of the operator system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)^{(n)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n times n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\times n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> Toeplitz matrices over the complex field, and by determining precisely the structure of the generators of the extremal rays of the positive cones of the operator systems <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mtext>min</mml:mtext>\n </mml:mrow>\n </mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)^{(n)}\\otimes _{\\text {min}}\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mtext>min</mml:mtext>\n </mml:mrow>\n </mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)_{(n)}\\otimes _{\\text {min}}\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an arbitrary Hilbert space and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)_{(n)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the operator system dual of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C(S^1)^{(n)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our approach also has the advantage of providing some new information concerning positive Toeplitz matrices whose entries are from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has infinite dimension. In particular, we prove that normal positive linear maps <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\">\n <mml:semantics>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B left-parenthesis script upper H right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {B}(\\mathcal {H})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are partially completely positive in the sense that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi Superscript left-parenthesis n right-parenthesis Baseline left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\psi ^{(n)}(x)</mml:ann","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toeplitz separability, entanglement, and complete positivity using operator system duality\",\"authors\":\"D. Farenick, Michelle McBurney\",\"doi\":\"10.1090/bproc/163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new proof is presented of a theorem of L. Gurvits [LANL Unclassified Technical Report (2001), LAUR–01–2030], which states that the cone of positive block-Toeplitz matrices with matrix entries has no entangled elements. The proof of the Gurvits separation theorem is achieved by making use of the structure of the operator system dual of the operator system <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)^{(n)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n times n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\times n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> Toeplitz matrices over the complex field, and by determining precisely the structure of the generators of the extremal rays of the positive cones of the operator systems <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:msub>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mtext>min</mml:mtext>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)^{(n)}\\\\otimes _{\\\\text {min}}\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis circled-times Subscript min Baseline script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msub>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mtext>min</mml:mtext>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)_{(n)}\\\\otimes _{\\\\text {min}}\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {H}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an arbitrary Hilbert space and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Subscript left-parenthesis n right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)_{(n)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the operator system dual of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-parenthesis upper S Superscript 1 Baseline right-parenthesis Superscript left-parenthesis n right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C(S^1)^{(n)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our approach also has the advantage of providing some new information concerning positive Toeplitz matrices whose entries are from <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {H}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> has infinite dimension. In particular, we prove that normal positive linear maps <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"psi\\\">\\n <mml:semantics>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\psi</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper B left-parenthesis script upper H right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {B}(\\\\mathcal {H})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are partially completely positive in the sense that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"psi Superscript left-parenthesis n right-parenthesis Baseline left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\psi ^{(n)}(x)</mml:ann\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了L. Gurvits [LANL Unclassified Technical Report (2001), lur - 01 - 2030]的一个定理的一个新的证明,该定理表明具有矩阵项的正块toeplitz矩阵的锥不存在纠缠元。利用算子系统C(s1) (n) C(S^1)^(n) (n × n) {}\times n Toeplitz矩阵在复域上的算子系统对偶结构实现了Gurvits分离定理的证明,并通过精确地确定算子系统C(s1) (n)⊗min B(H) C(s1)^{(n)}\otimes _ {\text min{}}\mathcal B{(}\mathcal H{)和C(S)的正锥极值射线发生器的结构1) (n)⊗min B(H) C(S^1)_}(n){}\otimes _ {\text min{}}\mathcal B{(}\mathcal H{),H }\mathcal H{是一个任意的希尔伯特空间C(s1) (n) C(s1)_}(n){是C(s1) (n) C(s1)^(n)的算子系统对偶。当H }{}\mathcal H具有无限维数时,我们的方法还提供了关于项来自B(H) {}\mathcal B{(}\mathcal H{)的正Toeplitz矩阵的一些新信息。特别地,我们证明了B(H) }\mathcal B(\mathcal H)上的正规正线性映射ψ {}\psi在ψ (n)(x) {}\psi ^(n){(x)}本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Toeplitz separability, entanglement, and complete positivity using operator system duality

A new proof is presented of a theorem of L. Gurvits [LANL Unclassified Technical Report (2001), LAUR–01–2030], which states that the cone of positive block-Toeplitz matrices with matrix entries has no entangled elements. The proof of the Gurvits separation theorem is achieved by making use of the structure of the operator system dual of the operator system C ( S 1 ) ( n ) C(S^1)^{(n)} of n × n n\times n Toeplitz matrices over the complex field, and by determining precisely the structure of the generators of the extremal rays of the positive cones of the operator systems C ( S 1 ) ( n ) min B ( H ) C(S^1)^{(n)}\otimes _{\text {min}}\mathcal {B}(\mathcal {H}) and C ( S 1 ) ( n ) min B ( H ) C(S^1)_{(n)}\otimes _{\text {min}}\mathcal {B}(\mathcal {H}) , where H \mathcal {H} is an arbitrary Hilbert space and C ( S 1 ) ( n ) C(S^1)_{(n)} is the operator system dual of C ( S 1 ) ( n ) C(S^1)^{(n)} . Our approach also has the advantage of providing some new information concerning positive Toeplitz matrices whose entries are from B ( H ) \mathcal {B}(\mathcal {H}) when H \mathcal {H} has infinite dimension. In particular, we prove that normal positive linear maps ψ \psi on B ( H ) \mathcal {B}(\mathcal {H}) are partially completely positive in the sense that ψ ( n ) ( x ) \psi ^{(n)}(x)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信