自适应模型预测控制的对抗方法

Paweł Wachel, C. Rojas
{"title":"自适应模型预测控制的对抗方法","authors":"Paweł Wachel, C. Rojas","doi":"10.15377/2409-5761.2022.09.10","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to introducing adaptation in Model Predictive Control (MPC). Assuming limited a priori knowledge about the process, we consider a finite set of possible models (a dictionary), and use the theory of adversarial multi-armed bandits to develop an adaptive version of MPC called adversarial adaptive MPC (AAMPC). Under weak assumptions on the dictionary components, we then establish theoretical bounds on the performance of AAMPC and show its empirical behaviour via simulation examples.","PeriodicalId":335387,"journal":{"name":"Journal of Advances in Applied & Computational Mathematics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adversarial Approach to Adaptive Model Predictive Control\",\"authors\":\"Paweł Wachel, C. Rojas\",\"doi\":\"10.15377/2409-5761.2022.09.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to introducing adaptation in Model Predictive Control (MPC). Assuming limited a priori knowledge about the process, we consider a finite set of possible models (a dictionary), and use the theory of adversarial multi-armed bandits to develop an adaptive version of MPC called adversarial adaptive MPC (AAMPC). Under weak assumptions on the dictionary components, we then establish theoretical bounds on the performance of AAMPC and show its empirical behaviour via simulation examples.\",\"PeriodicalId\":335387,\"journal\":{\"name\":\"Journal of Advances in Applied & Computational Mathematics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Applied & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15377/2409-5761.2022.09.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Applied & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2409-5761.2022.09.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了在模型预测控制(MPC)中引入自适应的新方法。假设对这一过程的先验知识有限,我们考虑了一组有限的可能模型(字典),并利用对抗性多武装强盗理论开发了一种自适应版本的MPC,称为对抗性自适应MPC (AAMPC)。在对字典组件的弱假设下,我们建立了AAMPC性能的理论界限,并通过仿真示例展示了其经验行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adversarial Approach to Adaptive Model Predictive Control
This paper presents a novel approach to introducing adaptation in Model Predictive Control (MPC). Assuming limited a priori knowledge about the process, we consider a finite set of possible models (a dictionary), and use the theory of adversarial multi-armed bandits to develop an adaptive version of MPC called adversarial adaptive MPC (AAMPC). Under weak assumptions on the dictionary components, we then establish theoretical bounds on the performance of AAMPC and show its empirical behaviour via simulation examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信