结合互相关对协方差矩阵估计的改进

R. Kirlin, W. Du
{"title":"结合互相关对协方差矩阵估计的改进","authors":"R. Kirlin, W. Du","doi":"10.1109/SPECT.1990.205599","DOIUrl":null,"url":null,"abstract":"Addresses the problem of improving the estimate of a covariance matrix from one set of multivariate random processes when there exist non-zero cross-correlations with another set of random processes. The improvement is obtained by linearly combining the first set's sample covariance matrix with covariance matrices predicted via the cross-correlations. The superiority of the proposed method is demonstrated by an application to spatial smoothing for the DOA estimation of coherent narrowband signals using a uniform linear array.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improvement on the estimation of covariance matrices by incorporating cross-correlations\",\"authors\":\"R. Kirlin, W. Du\",\"doi\":\"10.1109/SPECT.1990.205599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addresses the problem of improving the estimate of a covariance matrix from one set of multivariate random processes when there exist non-zero cross-correlations with another set of random processes. The improvement is obtained by linearly combining the first set's sample covariance matrix with covariance matrices predicted via the cross-correlations. The superiority of the proposed method is demonstrated by an application to spatial smoothing for the DOA estimation of coherent narrowband signals using a uniform linear array.<<ETX>>\",\"PeriodicalId\":117661,\"journal\":{\"name\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPECT.1990.205599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

解决了在一组多变量随机过程与另一组随机过程存在非零交叉相关时,如何改进对协方差矩阵的估计问题。通过将第一组样本协方差矩阵与通过互相关预测的协方差矩阵线性组合,得到改进。应用于均匀线性阵列相干窄带信号的空间平滑DOA估计,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement on the estimation of covariance matrices by incorporating cross-correlations
Addresses the problem of improving the estimate of a covariance matrix from one set of multivariate random processes when there exist non-zero cross-correlations with another set of random processes. The improvement is obtained by linearly combining the first set's sample covariance matrix with covariance matrices predicted via the cross-correlations. The superiority of the proposed method is demonstrated by an application to spatial smoothing for the DOA estimation of coherent narrowband signals using a uniform linear array.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信