基于qp的仿人机器人多接触运动任务空间混合/并行控制

Rafael Cisneros, M. Benallegue, M. Morisawa, F. Kanehiro
{"title":"基于qp的仿人机器人多接触运动任务空间混合/并行控制","authors":"Rafael Cisneros, M. Benallegue, M. Morisawa, F. Kanehiro","doi":"10.1109/Humanoids43949.2019.9035038","DOIUrl":null,"url":null,"abstract":"Humanoid robots rely on precise interaction force to locomote and perform various tasks. Controlling torque usually allows humanoid robots to produce these desired forces on known environments. However, the tracking may be imperfect in the absence of torque feedback or with an imprecise environment model. Furthermore, the presence of geometric errors, regarding the model of the environment, can also lead to discrepancies between desired and actual forces. In this paper, we extend our previous QP-based robust torque control framework to allow force control without requiring joint torque feedback. The control relies only on force/torque sensors at the end effectors, joint encoders and IMUs for kinematic feedback. Additionally, it is formulated to keep consistency with the internal state of the QP solver. We show that hybrid or parallel control, where position and force can be controlled independently, is possible with this approach. The framework is validated with stabilizer-free locomotion on uneven terrain and a multi-contact scenario with reference forces.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"QP-based task-space hybrid / parallel control for multi-contact motion in a torque-controlled humanoid robot\",\"authors\":\"Rafael Cisneros, M. Benallegue, M. Morisawa, F. Kanehiro\",\"doi\":\"10.1109/Humanoids43949.2019.9035038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humanoid robots rely on precise interaction force to locomote and perform various tasks. Controlling torque usually allows humanoid robots to produce these desired forces on known environments. However, the tracking may be imperfect in the absence of torque feedback or with an imprecise environment model. Furthermore, the presence of geometric errors, regarding the model of the environment, can also lead to discrepancies between desired and actual forces. In this paper, we extend our previous QP-based robust torque control framework to allow force control without requiring joint torque feedback. The control relies only on force/torque sensors at the end effectors, joint encoders and IMUs for kinematic feedback. Additionally, it is formulated to keep consistency with the internal state of the QP solver. We show that hybrid or parallel control, where position and force can be controlled independently, is possible with this approach. The framework is validated with stabilizer-free locomotion on uneven terrain and a multi-contact scenario with reference forces.\",\"PeriodicalId\":404758,\"journal\":{\"name\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids43949.2019.9035038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人形机器人依靠精确的相互作用力来移动和执行各种任务。控制扭矩通常允许人形机器人在已知环境中产生所需的力。然而,在缺乏扭矩反馈或环境模型不精确的情况下,跟踪可能是不完美的。此外,关于环境模型的几何误差的存在也可能导致期望力与实际力之间的差异。在本文中,我们扩展了之前基于qp的鲁棒转矩控制框架,使力控制不需要关节转矩反馈。控制仅依赖于力/扭矩传感器在末端执行器,联合编码器和imu的运动反馈。此外,它的制定与QP求解器的内部状态保持一致。我们表明,混合或并联控制,其中位置和力可以独立控制,是可能的与这种方法。该框架在不平坦地形上无稳定器运动和有参考力的多接触场景下进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QP-based task-space hybrid / parallel control for multi-contact motion in a torque-controlled humanoid robot
Humanoid robots rely on precise interaction force to locomote and perform various tasks. Controlling torque usually allows humanoid robots to produce these desired forces on known environments. However, the tracking may be imperfect in the absence of torque feedback or with an imprecise environment model. Furthermore, the presence of geometric errors, regarding the model of the environment, can also lead to discrepancies between desired and actual forces. In this paper, we extend our previous QP-based robust torque control framework to allow force control without requiring joint torque feedback. The control relies only on force/torque sensors at the end effectors, joint encoders and IMUs for kinematic feedback. Additionally, it is formulated to keep consistency with the internal state of the QP solver. We show that hybrid or parallel control, where position and force can be controlled independently, is possible with this approach. The framework is validated with stabilizer-free locomotion on uneven terrain and a multi-contact scenario with reference forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信