求非线性方程单根的三阶均值jarrat型方法

N. Ralević, Dejan Ćebić, I. Pavkov
{"title":"求非线性方程单根的三阶均值jarrat型方法","authors":"N. Ralević, Dejan Ćebić, I. Pavkov","doi":"10.1109/SISY.2015.7325364","DOIUrl":null,"url":null,"abstract":"This paper presents a new variant of the third-order iterative scheme for finding a simple root of nonlinear equation. The new scheme is a combination of Jarratt's method and the mean-based Newton's method of the third order. It is numerically compared with several relevant mean-based two-step methods, and the test examples agree with the theoretical analysis.","PeriodicalId":144551,"journal":{"name":"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The third order mean-based Jarratt-type method for finding simple roots of nonlinear equation\",\"authors\":\"N. Ralević, Dejan Ćebić, I. Pavkov\",\"doi\":\"10.1109/SISY.2015.7325364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new variant of the third-order iterative scheme for finding a simple root of nonlinear equation. The new scheme is a combination of Jarratt's method and the mean-based Newton's method of the third order. It is numerically compared with several relevant mean-based two-step methods, and the test examples agree with the theoretical analysis.\",\"PeriodicalId\":144551,\"journal\":{\"name\":\"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2015.7325364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2015.7325364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了求非线性方程单根的三阶迭代格式的一种新变体。新方案是Jarratt方法和基于均值的三阶牛顿方法的结合。并与几种相关的基于均值的两步法进行了数值比较,算例与理论分析相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The third order mean-based Jarratt-type method for finding simple roots of nonlinear equation
This paper presents a new variant of the third-order iterative scheme for finding a simple root of nonlinear equation. The new scheme is a combination of Jarratt's method and the mean-based Newton's method of the third order. It is numerically compared with several relevant mean-based two-step methods, and the test examples agree with the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信