{"title":"用于电力应用的印刷厚铜薄膜","authors":"J. Řeboun, J. Hlina, R. Soukup, J. Johan","doi":"10.1109/ESTC.2018.8546478","DOIUrl":null,"url":null,"abstract":"This paper presents a research focused on development of a new technology for the realization of substrates for power applications such as LED and power modules or CPV receivers. Power electronics puts high demands on substrates and electrical interconnections in terms of high current density in conductors and high dielectric strength and thermal conductivity of insulators. New thick printed copper technology is a selective additive manufacturing process that brings the benefits of material savings and production no chemical waste. It also brings significantly higher pattern resolution (down to 100 $\\mu$ m line/gap) than conventional DBC technology, possibility to realize step & relief thickness profile, Cu plated vias and multilayer circuits capability. Thick printed copper films show sufficient adhesion to alumina and aluminium nitride substrates and have an excellent resistance to thermal shock cycling.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Printed thick copper films for power applications\",\"authors\":\"J. Řeboun, J. Hlina, R. Soukup, J. Johan\",\"doi\":\"10.1109/ESTC.2018.8546478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a research focused on development of a new technology for the realization of substrates for power applications such as LED and power modules or CPV receivers. Power electronics puts high demands on substrates and electrical interconnections in terms of high current density in conductors and high dielectric strength and thermal conductivity of insulators. New thick printed copper technology is a selective additive manufacturing process that brings the benefits of material savings and production no chemical waste. It also brings significantly higher pattern resolution (down to 100 $\\\\mu$ m line/gap) than conventional DBC technology, possibility to realize step & relief thickness profile, Cu plated vias and multilayer circuits capability. Thick printed copper films show sufficient adhesion to alumina and aluminium nitride substrates and have an excellent resistance to thermal shock cycling.\",\"PeriodicalId\":198238,\"journal\":{\"name\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2018.8546478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a research focused on development of a new technology for the realization of substrates for power applications such as LED and power modules or CPV receivers. Power electronics puts high demands on substrates and electrical interconnections in terms of high current density in conductors and high dielectric strength and thermal conductivity of insulators. New thick printed copper technology is a selective additive manufacturing process that brings the benefits of material savings and production no chemical waste. It also brings significantly higher pattern resolution (down to 100 $\mu$ m line/gap) than conventional DBC technology, possibility to realize step & relief thickness profile, Cu plated vias and multilayer circuits capability. Thick printed copper films show sufficient adhesion to alumina and aluminium nitride substrates and have an excellent resistance to thermal shock cycling.