ADPCM环境与神经网络预测引擎

V. Groza, R. Abielmona, E. Petriu
{"title":"ADPCM环境与神经网络预测引擎","authors":"V. Groza, R. Abielmona, E. Petriu","doi":"10.1109/IMTC.2002.1006900","DOIUrl":null,"url":null,"abstract":"Presented in this paper is an innovative technique to improve analog-to-digital converters (ADCs). The methodology utilizes a built-in neural network engine to first learn, and then predict, the quantization step size. This produces a completely adaptable ADC, consisting of ADPCM samples fed back with the output of the neural network, which is capable of generating a better quantized output. The algorithmic solution, simulation methodology and results are also presented in this writing.","PeriodicalId":141111,"journal":{"name":"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADPCM environment with a neural network predictor engine\",\"authors\":\"V. Groza, R. Abielmona, E. Petriu\",\"doi\":\"10.1109/IMTC.2002.1006900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presented in this paper is an innovative technique to improve analog-to-digital converters (ADCs). The methodology utilizes a built-in neural network engine to first learn, and then predict, the quantization step size. This produces a completely adaptable ADC, consisting of ADPCM samples fed back with the output of the neural network, which is capable of generating a better quantized output. The algorithmic solution, simulation methodology and results are also presented in this writing.\",\"PeriodicalId\":141111,\"journal\":{\"name\":\"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.2002.1006900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2002.1006900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进模数转换器(adc)的创新技术。该方法利用内置的神经网络引擎首先学习,然后预测量化步长。这产生了一个完全自适应的ADC,由ADPCM样本与神经网络的输出反馈组成,能够产生更好的量化输出。文中还给出了算法解、仿真方法和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADPCM environment with a neural network predictor engine
Presented in this paper is an innovative technique to improve analog-to-digital converters (ADCs). The methodology utilizes a built-in neural network engine to first learn, and then predict, the quantization step size. This produces a completely adaptable ADC, consisting of ADPCM samples fed back with the output of the neural network, which is capable of generating a better quantized output. The algorithmic solution, simulation methodology and results are also presented in this writing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信