虚拟现实中多类别情绪预测的皮肤电和心率传感技术的初步研究

A. F. Bulagang, J. Mountstephens, J. Teo
{"title":"虚拟现实中多类别情绪预测的皮肤电和心率传感技术的初步研究","authors":"A. F. Bulagang, J. Mountstephens, J. Teo","doi":"10.1109/ISIEA51897.2021.9509995","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a method for classifying multi-model emotions using a combination of Heart Rate (HR) and Electrodermography (EDG) signals with SVM (Support Vector Machine) as the classifier in Virtual Reality (VR). A wearable was used during the experiment to acquire the subject's HR and EDG signals simultaneously while watching 360O videos in VR. The acquired signals are then classified with SVM in a multi-class model for valence and arousal. The experiment conducted is for 10 intra-subject classifications, in which two subjects achieved the best accuracy of 99.5%, while for inter-subject classification of 10 subjects achieved 66.0%, This paper demonstrates that combined signals of HR and EDG can provide high accuracy for multi-class emotion classification in VR.","PeriodicalId":336442,"journal":{"name":"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrodermography and Heart Rate Sensing for Multiclass Emotion Prediction in Virtual Reality: A Preliminary Investigation\",\"authors\":\"A. F. Bulagang, J. Mountstephens, J. Teo\",\"doi\":\"10.1109/ISIEA51897.2021.9509995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a method for classifying multi-model emotions using a combination of Heart Rate (HR) and Electrodermography (EDG) signals with SVM (Support Vector Machine) as the classifier in Virtual Reality (VR). A wearable was used during the experiment to acquire the subject's HR and EDG signals simultaneously while watching 360O videos in VR. The acquired signals are then classified with SVM in a multi-class model for valence and arousal. The experiment conducted is for 10 intra-subject classifications, in which two subjects achieved the best accuracy of 99.5%, while for inter-subject classification of 10 subjects achieved 66.0%, This paper demonstrates that combined signals of HR and EDG can provide high accuracy for multi-class emotion classification in VR.\",\"PeriodicalId\":336442,\"journal\":{\"name\":\"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIEA51897.2021.9509995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA51897.2021.9509995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于支持向量机(SVM)的多模型情绪分类方法,该方法将心率(HR)和皮肤电图(EDG)信号结合起来作为虚拟现实(VR)中的分类器。实验中使用可穿戴设备,在观看360度VR视频的同时采集受试者的HR和EDG信号。然后用支持向量机对采集到的信号进行价和激的多类分类。实验共进行了10个主题内分类,其中2个主题的分类准确率最高,达到99.5%,10个主题间分类准确率最高,达到66.0%。本文表明,HR和EDG联合信号可以为VR中的多类情绪分类提供较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrodermography and Heart Rate Sensing for Multiclass Emotion Prediction in Virtual Reality: A Preliminary Investigation
This paper demonstrates a method for classifying multi-model emotions using a combination of Heart Rate (HR) and Electrodermography (EDG) signals with SVM (Support Vector Machine) as the classifier in Virtual Reality (VR). A wearable was used during the experiment to acquire the subject's HR and EDG signals simultaneously while watching 360O videos in VR. The acquired signals are then classified with SVM in a multi-class model for valence and arousal. The experiment conducted is for 10 intra-subject classifications, in which two subjects achieved the best accuracy of 99.5%, while for inter-subject classification of 10 subjects achieved 66.0%, This paper demonstrates that combined signals of HR and EDG can provide high accuracy for multi-class emotion classification in VR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信