用有理函数讨论最小p值逼近与极大极小逼近的最大误差关系

T. Nishi, Feng Lu
{"title":"用有理函数讨论最小p值逼近与极大极小逼近的最大误差关系","authors":"T. Nishi, Feng Lu","doi":"10.1109/MWSCAS.1998.759558","DOIUrl":null,"url":null,"abstract":"This paper deals with the least pth approximation (p even) by a rational function and gives a theoretical lower bound for the ratio of the maximum error of the minimax approximation to that of the least pth approximation. Through numerical examples on various kinds of functions we verified that the above lower bound is a good estimation for the corresponding actual ratios. These results show that the least pth approximation for p=8 or 16 is usually enough to achieve a good approximation to the minimax approximation.","PeriodicalId":338994,"journal":{"name":"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the relation between the maximum errors of the least pth approximation and the minimax approximation by a rational function\",\"authors\":\"T. Nishi, Feng Lu\",\"doi\":\"10.1109/MWSCAS.1998.759558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the least pth approximation (p even) by a rational function and gives a theoretical lower bound for the ratio of the maximum error of the minimax approximation to that of the least pth approximation. Through numerical examples on various kinds of functions we verified that the above lower bound is a good estimation for the corresponding actual ratios. These results show that the least pth approximation for p=8 or 16 is usually enough to achieve a good approximation to the minimax approximation.\",\"PeriodicalId\":338994,\"journal\":{\"name\":\"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1998.759558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1998.759558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了有理函数的最小p值近似(p偶),并给出了最小p值近似的最大误差与最小p值近似的最大误差之比的理论下界。通过对各种函数的数值算例,验证了上述下界对于相应的实际比率是一个很好的估计。这些结果表明,p=8或16的最小p值近似值通常足以达到极大极小近似值的良好近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the relation between the maximum errors of the least pth approximation and the minimax approximation by a rational function
This paper deals with the least pth approximation (p even) by a rational function and gives a theoretical lower bound for the ratio of the maximum error of the minimax approximation to that of the least pth approximation. Through numerical examples on various kinds of functions we verified that the above lower bound is a good estimation for the corresponding actual ratios. These results show that the least pth approximation for p=8 or 16 is usually enough to achieve a good approximation to the minimax approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信