基于rram边缘人工智能的权值剪枝和差分横杆映射提高DNN容错性

Geng Yuan, Zhiheng Liao, Xiaolong Ma, Yuxuan Cai, Zhenglun Kong, Xuan Shen, Jingyan Fu, Zhengang Li, Chengming Zhang, Hongwu Peng, Ning Liu, Ao Ren, Jinhui Wang, Yanzhi Wang
{"title":"基于rram边缘人工智能的权值剪枝和差分横杆映射提高DNN容错性","authors":"Geng Yuan, Zhiheng Liao, Xiaolong Ma, Yuxuan Cai, Zhenglun Kong, Xuan Shen, Jingyan Fu, Zhengang Li, Chengming Zhang, Hongwu Peng, Ning Liu, Ao Ren, Jinhui Wang, Yanzhi Wang","doi":"10.1109/ISQED51717.2021.9424332","DOIUrl":null,"url":null,"abstract":"Recent research demonstrated the promise of using resistive random access memory (ReRAM) as an emerging technology to perform inherently parallel analog domain in-situ matrix-vector multiplication—the intensive and key computation in deep neural networks (DNNs). However, hardware failure, such as stuck-at-fault defects, is one of the main concerns that impedes the ReRAM devices to be a feasible solution for real implementations. The existing solutions to address this issue usually require an optimization to be conducted for each individual device, which is impractical for mass-produced products (e.g., IoT devices). In this paper, we rethink the value of weight pruning in ReRAM-based DNN design from the perspective of model fault tolerance. And a differential mapping scheme is proposed to improve the fault tolerance under a high stuck-on fault rate. Our method can tolerate almost an order of magnitude higher failure rate than the traditional two-column method in representative DNN tasks. More importantly, our method does not require extra hardware cost compared to the traditional two-column mapping scheme. The improvement is universal and does not require the optimization process for each individual device.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Improving DNN Fault Tolerance using Weight Pruning and Differential Crossbar Mapping for ReRAM-based Edge AI\",\"authors\":\"Geng Yuan, Zhiheng Liao, Xiaolong Ma, Yuxuan Cai, Zhenglun Kong, Xuan Shen, Jingyan Fu, Zhengang Li, Chengming Zhang, Hongwu Peng, Ning Liu, Ao Ren, Jinhui Wang, Yanzhi Wang\",\"doi\":\"10.1109/ISQED51717.2021.9424332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research demonstrated the promise of using resistive random access memory (ReRAM) as an emerging technology to perform inherently parallel analog domain in-situ matrix-vector multiplication—the intensive and key computation in deep neural networks (DNNs). However, hardware failure, such as stuck-at-fault defects, is one of the main concerns that impedes the ReRAM devices to be a feasible solution for real implementations. The existing solutions to address this issue usually require an optimization to be conducted for each individual device, which is impractical for mass-produced products (e.g., IoT devices). In this paper, we rethink the value of weight pruning in ReRAM-based DNN design from the perspective of model fault tolerance. And a differential mapping scheme is proposed to improve the fault tolerance under a high stuck-on fault rate. Our method can tolerate almost an order of magnitude higher failure rate than the traditional two-column method in representative DNN tasks. More importantly, our method does not require extra hardware cost compared to the traditional two-column mapping scheme. The improvement is universal and does not require the optimization process for each individual device.\",\"PeriodicalId\":123018,\"journal\":{\"name\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED51717.2021.9424332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

最近的研究表明,使用电阻随机存取存储器(ReRAM)作为一种新兴技术,有望执行内在并行模拟域原位矩阵向量乘法,这是深度神经网络(dnn)中密集和关键的计算。然而,硬件故障,如卡在故障缺陷,是阻碍ReRAM设备成为实际实现的可行解决方案的主要问题之一。解决这个问题的现有解决方案通常需要对每个单独的设备进行优化,这对于批量生产的产品(例如物联网设备)是不切实际的。本文从模型容错的角度重新思考了权值剪枝在基于reram的深度神经网络设计中的价值。提出了一种差分映射方案,提高了系统在高卡断率下的容错性。在具有代表性的深度神经网络任务中,我们的方法可以容忍比传统的双列方法高一个数量级的故障率。更重要的是,与传统的两列映射方案相比,我们的方法不需要额外的硬件成本。这种改进是普遍的,不需要对每个单独的设备进行优化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving DNN Fault Tolerance using Weight Pruning and Differential Crossbar Mapping for ReRAM-based Edge AI
Recent research demonstrated the promise of using resistive random access memory (ReRAM) as an emerging technology to perform inherently parallel analog domain in-situ matrix-vector multiplication—the intensive and key computation in deep neural networks (DNNs). However, hardware failure, such as stuck-at-fault defects, is one of the main concerns that impedes the ReRAM devices to be a feasible solution for real implementations. The existing solutions to address this issue usually require an optimization to be conducted for each individual device, which is impractical for mass-produced products (e.g., IoT devices). In this paper, we rethink the value of weight pruning in ReRAM-based DNN design from the perspective of model fault tolerance. And a differential mapping scheme is proposed to improve the fault tolerance under a high stuck-on fault rate. Our method can tolerate almost an order of magnitude higher failure rate than the traditional two-column method in representative DNN tasks. More importantly, our method does not require extra hardware cost compared to the traditional two-column mapping scheme. The improvement is universal and does not require the optimization process for each individual device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信