将文本表示为以上下文为中心的实体关联数据图

A. Freitas, Seán O'Riain, E. Curry, J. F. C. Silva, Danilo S. Carvalho
{"title":"将文本表示为以上下文为中心的实体关联数据图","authors":"A. Freitas, Seán O'Riain, E. Curry, J. F. C. Silva, Danilo S. Carvalho","doi":"10.1109/DEXA.2013.21","DOIUrl":null,"url":null,"abstract":"The integration of a small fraction of the information present in the Web of Documents to the Linked Data Web can provide a significant shift on the amount of information available to data consumers. However, information extracted from text does not easily fit into the usually highly normalized structure of ontology-based datasets. While the representation of structured data assumes a high level of regularity, relatively simple and consistent conceptual models, the representation of information extracted from texts need to take into account large terminological variation, complex contextual/dependency patterns, and fuzzy or conflicting semantics. This work focuses on bridging the gap between structured and unstructured data, proposing the representation of text as structured discourse graphs (SDGs), targeting an RDF representation of unstructured data. The representation focuses on a semantic best-effort information extraction scenario, where information from text is extracted under a pay-as-you-go data quality perspective, trading terminological normalization for domain-independency, context capture, wider representation scope and maximization of textual information capture.","PeriodicalId":428515,"journal":{"name":"2013 24th International Workshop on Database and Expert Systems Applications","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Representing Texts as Contextualized Entity-Centric Linked Data Graphs\",\"authors\":\"A. Freitas, Seán O'Riain, E. Curry, J. F. C. Silva, Danilo S. Carvalho\",\"doi\":\"10.1109/DEXA.2013.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of a small fraction of the information present in the Web of Documents to the Linked Data Web can provide a significant shift on the amount of information available to data consumers. However, information extracted from text does not easily fit into the usually highly normalized structure of ontology-based datasets. While the representation of structured data assumes a high level of regularity, relatively simple and consistent conceptual models, the representation of information extracted from texts need to take into account large terminological variation, complex contextual/dependency patterns, and fuzzy or conflicting semantics. This work focuses on bridging the gap between structured and unstructured data, proposing the representation of text as structured discourse graphs (SDGs), targeting an RDF representation of unstructured data. The representation focuses on a semantic best-effort information extraction scenario, where information from text is extracted under a pay-as-you-go data quality perspective, trading terminological normalization for domain-independency, context capture, wider representation scope and maximization of textual information capture.\",\"PeriodicalId\":428515,\"journal\":{\"name\":\"2013 24th International Workshop on Database and Expert Systems Applications\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 24th International Workshop on Database and Expert Systems Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2013.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 24th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

将文档网络中的一小部分信息集成到关联数据网络中,可以为数据消费者提供大量可用的信息。然而,从文本中提取的信息不容易适应通常高度规范化的基于本体的数据集结构。虽然结构化数据的表示具有高度的规律性、相对简单和一致的概念模型,但从文本中提取的信息的表示需要考虑大量的术语变化、复杂的上下文/依赖模式以及模糊或冲突的语义。这项工作的重点是弥合结构化和非结构化数据之间的差距,提出将文本表示为结构化话语图(sdg),目标是非结构化数据的RDF表示。该表示侧重于语义上的尽力而为信息提取场景,在该场景中,从文本中提取信息的方式是按现收现付的数据质量视角,将术语规范化转换为领域独立性、上下文捕获、更广泛的表示范围和文本信息捕获的最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representing Texts as Contextualized Entity-Centric Linked Data Graphs
The integration of a small fraction of the information present in the Web of Documents to the Linked Data Web can provide a significant shift on the amount of information available to data consumers. However, information extracted from text does not easily fit into the usually highly normalized structure of ontology-based datasets. While the representation of structured data assumes a high level of regularity, relatively simple and consistent conceptual models, the representation of information extracted from texts need to take into account large terminological variation, complex contextual/dependency patterns, and fuzzy or conflicting semantics. This work focuses on bridging the gap between structured and unstructured data, proposing the representation of text as structured discourse graphs (SDGs), targeting an RDF representation of unstructured data. The representation focuses on a semantic best-effort information extraction scenario, where information from text is extracted under a pay-as-you-go data quality perspective, trading terminological normalization for domain-independency, context capture, wider representation scope and maximization of textual information capture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信