基于非保持不确定输入的线性区间预测器保证采样的最坏情况输入信号的产生

C. Combastel
{"title":"基于非保持不确定输入的线性区间预测器保证采样的最坏情况输入信号的产生","authors":"C. Combastel","doi":"10.1109/CDC.2012.6426300","DOIUrl":null,"url":null,"abstract":"This paper deals with the design of experiments for the validation of a class of interval dynamic models. Set-membership algorithms based on interval analysis often allow the computation of guaranteed bounds (e.g. reach tubes, bounds for some estimates) enclosing all the possible scenarios according to some model where uncertainties are specified in a bounded error context. The guarantee of inclusion is very useful to ensure a complete coverage of all the specified scenarios in verification problems (e.g. verification of safety properties). However, such a guarantee and, consequently, the verified properties hold in practice only up to the validity of the considered uncertain model. In addition, the practical validation of dynamic interval models involving bounded uncertain inputs is quite difficult since finding a relevant input excitation leading to some worst-case scenario (e.g. an output reaching its maximum or minimum admissible value at a given time instant) is not a trivial task in general. The current paper proposes a constructive method to generate such worst-case input signals based on the guaranteed sampling of linear interval predictors with non-held uncertain inputs. The results are then illustrated through the example of designing worst-case road profiles to validate the interval model of a quarter vehicle suspension.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generation of worst-case input signals based on the guaranteed sampling of linear interval predictors with non-held uncertain inputs\",\"authors\":\"C. Combastel\",\"doi\":\"10.1109/CDC.2012.6426300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the design of experiments for the validation of a class of interval dynamic models. Set-membership algorithms based on interval analysis often allow the computation of guaranteed bounds (e.g. reach tubes, bounds for some estimates) enclosing all the possible scenarios according to some model where uncertainties are specified in a bounded error context. The guarantee of inclusion is very useful to ensure a complete coverage of all the specified scenarios in verification problems (e.g. verification of safety properties). However, such a guarantee and, consequently, the verified properties hold in practice only up to the validity of the considered uncertain model. In addition, the practical validation of dynamic interval models involving bounded uncertain inputs is quite difficult since finding a relevant input excitation leading to some worst-case scenario (e.g. an output reaching its maximum or minimum admissible value at a given time instant) is not a trivial task in general. The current paper proposes a constructive method to generate such worst-case input signals based on the guaranteed sampling of linear interval predictors with non-held uncertain inputs. The results are then illustrated through the example of designing worst-case road profiles to validate the interval model of a quarter vehicle suspension.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6426300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了一类区间动态模型验证的实验设计。基于区间分析的集合隶属度算法通常允许计算保证边界(例如到达管,某些估计的边界),根据某些模型包含所有可能的场景,其中不确定性在有界误差上下文中指定。包含保证对于确保验证问题中所有指定场景的完整覆盖非常有用(例如安全属性的验证)。然而,这样的保证,因此,在实践中,验证的性质只到考虑的不确定模型的有效性。此外,涉及有界不确定输入的动态区间模型的实际验证是相当困难的,因为找到导致某些最坏情况的相关输入激励(例如,在给定的时间瞬间达到其最大或最小允许值的输出)通常不是一项简单的任务。本文提出了一种基于非保持不确定输入的线性区间预测器保证采样的构造方法来生成最坏情况输入信号。最后,通过设计最坏情况下的道路轮廓来验证四分之一车辆悬架的区间模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of worst-case input signals based on the guaranteed sampling of linear interval predictors with non-held uncertain inputs
This paper deals with the design of experiments for the validation of a class of interval dynamic models. Set-membership algorithms based on interval analysis often allow the computation of guaranteed bounds (e.g. reach tubes, bounds for some estimates) enclosing all the possible scenarios according to some model where uncertainties are specified in a bounded error context. The guarantee of inclusion is very useful to ensure a complete coverage of all the specified scenarios in verification problems (e.g. verification of safety properties). However, such a guarantee and, consequently, the verified properties hold in practice only up to the validity of the considered uncertain model. In addition, the practical validation of dynamic interval models involving bounded uncertain inputs is quite difficult since finding a relevant input excitation leading to some worst-case scenario (e.g. an output reaching its maximum or minimum admissible value at a given time instant) is not a trivial task in general. The current paper proposes a constructive method to generate such worst-case input signals based on the guaranteed sampling of linear interval predictors with non-held uncertain inputs. The results are then illustrated through the example of designing worst-case road profiles to validate the interval model of a quarter vehicle suspension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信