基于Hermite多项式混沌的随机参数化模型降阶的实际实现

Yi Zou, Yici Cai, Qiang Zhou, Xianlong Hong, S. Tan, Le Kang
{"title":"基于Hermite多项式混沌的随机参数化模型降阶的实际实现","authors":"Yi Zou, Yici Cai, Qiang Zhou, Xianlong Hong, S. Tan, Le Kang","doi":"10.1109/ASPDAC.2007.358013","DOIUrl":null,"url":null,"abstract":"This paper describes the stochastic model order reduction algorithm via stochastic Hermite polynomials from the practical implementation perspective. Comparing with existing work on stochastic interconnect analysis and parameterized model order reduction, we generalized the input variation representation using polynomial chaos (PC) to allow for accurate modeling of non-Gaussian input variations. We also explore the implicit system representation using sub-matrices and improved the efficiency for solving the linear equations utilizing block matrix structure of the augmented system. Experiments show that our algorithm matches with Monte Carlo methods very well while keeping the algorithm effective. And the PC representation of non-Gaussian variables gains more accuracy than Taylor representation used in previous work (Wang et al., 2004).","PeriodicalId":362373,"journal":{"name":"2007 Asia and South Pacific Design Automation Conference","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Practical Implementation of Stochastic Parameterized Model Order Reduction via Hermite Polynomial Chaos\",\"authors\":\"Yi Zou, Yici Cai, Qiang Zhou, Xianlong Hong, S. Tan, Le Kang\",\"doi\":\"10.1109/ASPDAC.2007.358013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the stochastic model order reduction algorithm via stochastic Hermite polynomials from the practical implementation perspective. Comparing with existing work on stochastic interconnect analysis and parameterized model order reduction, we generalized the input variation representation using polynomial chaos (PC) to allow for accurate modeling of non-Gaussian input variations. We also explore the implicit system representation using sub-matrices and improved the efficiency for solving the linear equations utilizing block matrix structure of the augmented system. Experiments show that our algorithm matches with Monte Carlo methods very well while keeping the algorithm effective. And the PC representation of non-Gaussian variables gains more accuracy than Taylor representation used in previous work (Wang et al., 2004).\",\"PeriodicalId\":362373,\"journal\":{\"name\":\"2007 Asia and South Pacific Design Automation Conference\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2007.358013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2007.358013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文从实际实现的角度描述了基于随机埃尔米特多项式的随机模型降阶算法。与已有的随机互连分析和参数化模型降阶研究相比,我们利用多项式混沌(PC)对输入变化表示进行了推广,从而可以对非高斯输入变化进行精确建模。我们还探索了使用子矩阵的隐式系统表示,并利用增广系统的分块矩阵结构提高了求解线性方程的效率。实验表明,该算法在保持算法有效性的前提下,与蒙特卡罗方法匹配良好。非高斯变量的PC表示比以前工作中使用的Taylor表示获得了更高的精度(Wang et al., 2004)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Implementation of Stochastic Parameterized Model Order Reduction via Hermite Polynomial Chaos
This paper describes the stochastic model order reduction algorithm via stochastic Hermite polynomials from the practical implementation perspective. Comparing with existing work on stochastic interconnect analysis and parameterized model order reduction, we generalized the input variation representation using polynomial chaos (PC) to allow for accurate modeling of non-Gaussian input variations. We also explore the implicit system representation using sub-matrices and improved the efficiency for solving the linear equations utilizing block matrix structure of the augmented system. Experiments show that our algorithm matches with Monte Carlo methods very well while keeping the algorithm effective. And the PC representation of non-Gaussian variables gains more accuracy than Taylor representation used in previous work (Wang et al., 2004).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信