Dimitrios Garyfallou, Ioannis Tsiokanos, N. Evmorfopoulos, G. Stamoulis, G. Karakonstantis
{"title":"基于事件驱动仿真的动态时序松弛精确估计","authors":"Dimitrios Garyfallou, Ioannis Tsiokanos, N. Evmorfopoulos, G. Stamoulis, G. Karakonstantis","doi":"10.1109/ISQED48828.2020.9137017","DOIUrl":null,"url":null,"abstract":"The pessimistic nature of conventional static timing analysis has turned the attention of many studies to the exploitation of the dynamic data-dependent excitation of paths. Such studies may have revealed extensive dynamic timing slacks (DTS), however, they rely on frameworks that inherently make worst-case assumptions and still ignore some data-dependent timing properties. This may cause significant DTS underestimation, leading to unexploited frequency scaling margins and incorrect timing failure estimation. In this paper, we develop a framework based on event-driven timing simulation that identifies the underestimated DTS, and evaluate its gains on various post-place-and-route designs. Experimental results show that our event-driven simulation scheme achieves on average 2.35% and up-to 194.51% DTS improvement over conventional graph-based techniques. When compared to existing frequency scaling schemes, the proposed approach enables us to further increase the clock frequency by up-to 10.42%. We also demonstrate that our approach can reveal that timing failures may be up-to $\\mathbf{2.94}\\times$ less than the ones estimated by existing failure estimation techniques, under potential variation-induced delay increase.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Accurate Estimation of Dynamic Timing Slacks using Event-Driven Simulation\",\"authors\":\"Dimitrios Garyfallou, Ioannis Tsiokanos, N. Evmorfopoulos, G. Stamoulis, G. Karakonstantis\",\"doi\":\"10.1109/ISQED48828.2020.9137017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pessimistic nature of conventional static timing analysis has turned the attention of many studies to the exploitation of the dynamic data-dependent excitation of paths. Such studies may have revealed extensive dynamic timing slacks (DTS), however, they rely on frameworks that inherently make worst-case assumptions and still ignore some data-dependent timing properties. This may cause significant DTS underestimation, leading to unexploited frequency scaling margins and incorrect timing failure estimation. In this paper, we develop a framework based on event-driven timing simulation that identifies the underestimated DTS, and evaluate its gains on various post-place-and-route designs. Experimental results show that our event-driven simulation scheme achieves on average 2.35% and up-to 194.51% DTS improvement over conventional graph-based techniques. When compared to existing frequency scaling schemes, the proposed approach enables us to further increase the clock frequency by up-to 10.42%. We also demonstrate that our approach can reveal that timing failures may be up-to $\\\\mathbf{2.94}\\\\times$ less than the ones estimated by existing failure estimation techniques, under potential variation-induced delay increase.\",\"PeriodicalId\":225828,\"journal\":{\"name\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED48828.2020.9137017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9137017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate Estimation of Dynamic Timing Slacks using Event-Driven Simulation
The pessimistic nature of conventional static timing analysis has turned the attention of many studies to the exploitation of the dynamic data-dependent excitation of paths. Such studies may have revealed extensive dynamic timing slacks (DTS), however, they rely on frameworks that inherently make worst-case assumptions and still ignore some data-dependent timing properties. This may cause significant DTS underestimation, leading to unexploited frequency scaling margins and incorrect timing failure estimation. In this paper, we develop a framework based on event-driven timing simulation that identifies the underestimated DTS, and evaluate its gains on various post-place-and-route designs. Experimental results show that our event-driven simulation scheme achieves on average 2.35% and up-to 194.51% DTS improvement over conventional graph-based techniques. When compared to existing frequency scaling schemes, the proposed approach enables us to further increase the clock frequency by up-to 10.42%. We also demonstrate that our approach can reveal that timing failures may be up-to $\mathbf{2.94}\times$ less than the ones estimated by existing failure estimation techniques, under potential variation-induced delay increase.