{"title":"CMP均匀性的实用迭代填充合成","authors":"Yu Chen, A. Kahng, G. Robins, A. Zelikovsky","doi":"10.1145/337292.337610","DOIUrl":null,"url":null,"abstract":"We propose practical iterated methods for layout density control for CMP uniformity, based on linear programming, Monte-Carlo and greedy algorithms. We experimentally study the tradeoffs between two main filling objectives: minimizing density variation, and minimizing the total amount of inserted fill. Comparisons with previous filling methods show the advantages of our new iterated Monte-Carlo and iterated greedy methods. We achieve near-optimal filling with respect to each of the objectives and for both density models (spatial density [3] and effective density [8]). Our new methods are more efficient in practice than linear programming [3] and more accurate than non-iterated Monte-Carlo approaches [1].","PeriodicalId":237114,"journal":{"name":"Proceedings 37th Design Automation Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Practical iterated fill synthesis for CMP uniformity\",\"authors\":\"Yu Chen, A. Kahng, G. Robins, A. Zelikovsky\",\"doi\":\"10.1145/337292.337610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose practical iterated methods for layout density control for CMP uniformity, based on linear programming, Monte-Carlo and greedy algorithms. We experimentally study the tradeoffs between two main filling objectives: minimizing density variation, and minimizing the total amount of inserted fill. Comparisons with previous filling methods show the advantages of our new iterated Monte-Carlo and iterated greedy methods. We achieve near-optimal filling with respect to each of the objectives and for both density models (spatial density [3] and effective density [8]). Our new methods are more efficient in practice than linear programming [3] and more accurate than non-iterated Monte-Carlo approaches [1].\",\"PeriodicalId\":237114,\"journal\":{\"name\":\"Proceedings 37th Design Automation Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 37th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/337292.337610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 37th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/337292.337610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical iterated fill synthesis for CMP uniformity
We propose practical iterated methods for layout density control for CMP uniformity, based on linear programming, Monte-Carlo and greedy algorithms. We experimentally study the tradeoffs between two main filling objectives: minimizing density variation, and minimizing the total amount of inserted fill. Comparisons with previous filling methods show the advantages of our new iterated Monte-Carlo and iterated greedy methods. We achieve near-optimal filling with respect to each of the objectives and for both density models (spatial density [3] and effective density [8]). Our new methods are more efficient in practice than linear programming [3] and more accurate than non-iterated Monte-Carlo approaches [1].