利用生物质热电联产优化工业能源效率

Muhammad Tahir Hassan, S. Burek, M. Farrag
{"title":"利用生物质热电联产优化工业能源效率","authors":"Muhammad Tahir Hassan, S. Burek, M. Farrag","doi":"10.1109/UPEC.2018.8541857","DOIUrl":null,"url":null,"abstract":"Combined heat and power (CHP) is considered one of the most appropriate and promising technologies for the improvement of industrial energy efficiency. This study is a feasibility analysis of the application of various cogeneration systems using biofuel (rice husk) based on Rankine, Brayton and Combined cycles for a medium-sized paper mill in Pakistan, to assess the potential for energy savings in this sector through improved energy efficiency. Thermodynamic and economic analysis are carried out to suggest the most appropriate option for the studied industrial unit. It was found that cogeneration based on the Brayton cycle is the most feasible option for the studied mill based on technical and economic perspectives, as it has the highest energy utilisation factor (EUF) and lowest annualised life cycle cost compared to the other proposed options. The overall saving of the proposed CHP system based on Brayton cycle is calculated at 2,515,216 USD annually. Keeping in view the energy crises in Pakistan, using energy efficient cogeneration systems and bio-fuel (rice husk) in the industrial sector, a significant amount of energy can be conserved, resulting in the reduction of GHGs and helping to achieve sustainability and a cleaner environment.","PeriodicalId":340842,"journal":{"name":"2018 53rd International Universities Power Engineering Conference (UPEC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Energy Efficiency Optimisation Through Cogeneration Using Biomass\",\"authors\":\"Muhammad Tahir Hassan, S. Burek, M. Farrag\",\"doi\":\"10.1109/UPEC.2018.8541857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined heat and power (CHP) is considered one of the most appropriate and promising technologies for the improvement of industrial energy efficiency. This study is a feasibility analysis of the application of various cogeneration systems using biofuel (rice husk) based on Rankine, Brayton and Combined cycles for a medium-sized paper mill in Pakistan, to assess the potential for energy savings in this sector through improved energy efficiency. Thermodynamic and economic analysis are carried out to suggest the most appropriate option for the studied industrial unit. It was found that cogeneration based on the Brayton cycle is the most feasible option for the studied mill based on technical and economic perspectives, as it has the highest energy utilisation factor (EUF) and lowest annualised life cycle cost compared to the other proposed options. The overall saving of the proposed CHP system based on Brayton cycle is calculated at 2,515,216 USD annually. Keeping in view the energy crises in Pakistan, using energy efficient cogeneration systems and bio-fuel (rice husk) in the industrial sector, a significant amount of energy can be conserved, resulting in the reduction of GHGs and helping to achieve sustainability and a cleaner environment.\",\"PeriodicalId\":340842,\"journal\":{\"name\":\"2018 53rd International Universities Power Engineering Conference (UPEC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 53rd International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2018.8541857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 53rd International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2018.8541857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热电联产(CHP)被认为是提高工业能源效率最合适和最有前途的技术之一。本研究是对巴基斯坦一家中型造纸厂应用基于Rankine、Brayton和联合循环的各种生物燃料(稻壳)热电联产系统的可行性分析,以评估通过提高能源效率在该部门节约能源的潜力。进行了热力学和经济分析,为所研究的工业装置提出了最合适的选择。研究发现,从技术和经济角度来看,基于布雷顿循环的热电联产是所研究工厂最可行的选择,因为与其他提议的选择相比,它具有最高的能源利用系数(EUF)和最低的年化生命周期成本。根据布雷顿循环计算,建议的热电联产系统每年节省的总费用为2,515,216美元。考虑到巴基斯坦的能源危机,在工业部门使用节能热电联产系统和生物燃料(稻壳),可以节省大量能源,从而减少温室气体,并有助于实现可持续性和更清洁的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industrial Energy Efficiency Optimisation Through Cogeneration Using Biomass
Combined heat and power (CHP) is considered one of the most appropriate and promising technologies for the improvement of industrial energy efficiency. This study is a feasibility analysis of the application of various cogeneration systems using biofuel (rice husk) based on Rankine, Brayton and Combined cycles for a medium-sized paper mill in Pakistan, to assess the potential for energy savings in this sector through improved energy efficiency. Thermodynamic and economic analysis are carried out to suggest the most appropriate option for the studied industrial unit. It was found that cogeneration based on the Brayton cycle is the most feasible option for the studied mill based on technical and economic perspectives, as it has the highest energy utilisation factor (EUF) and lowest annualised life cycle cost compared to the other proposed options. The overall saving of the proposed CHP system based on Brayton cycle is calculated at 2,515,216 USD annually. Keeping in view the energy crises in Pakistan, using energy efficient cogeneration systems and bio-fuel (rice husk) in the industrial sector, a significant amount of energy can be conserved, resulting in the reduction of GHGs and helping to achieve sustainability and a cleaner environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信