使用隐马尔可夫模型识别疾病相关基因的文献检索工具

S. Sreekala, K. Nazeer
{"title":"使用隐马尔可夫模型识别疾病相关基因的文献检索工具","authors":"S. Sreekala, K. Nazeer","doi":"10.1109/COMPSC.2014.7032627","DOIUrl":null,"url":null,"abstract":"Understanding the role of genetics is very important for the in-depth study of a disease. Even though lots of information about gene-disease association is available, it is difficult even for an expert user to manually extract it from the huge volume of literature. Therefore, this work introduces a novel extraction tool that can identify disease associated genes from the literature using text-mining algorithm. Here, Hidden Markov Model is combined with a rule-based Named Entity Recognition approach to identify gene symbols from the literature. This will predict the good candidate genes for the disease which will help in the further analysis of the disease.","PeriodicalId":388270,"journal":{"name":"2014 First International Conference on Computational Systems and Communications (ICCSC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A literature search tool for identifying disease-associated genes using Hidden Markov model\",\"authors\":\"S. Sreekala, K. Nazeer\",\"doi\":\"10.1109/COMPSC.2014.7032627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the role of genetics is very important for the in-depth study of a disease. Even though lots of information about gene-disease association is available, it is difficult even for an expert user to manually extract it from the huge volume of literature. Therefore, this work introduces a novel extraction tool that can identify disease associated genes from the literature using text-mining algorithm. Here, Hidden Markov Model is combined with a rule-based Named Entity Recognition approach to identify gene symbols from the literature. This will predict the good candidate genes for the disease which will help in the further analysis of the disease.\",\"PeriodicalId\":388270,\"journal\":{\"name\":\"2014 First International Conference on Computational Systems and Communications (ICCSC)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 First International Conference on Computational Systems and Communications (ICCSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSC.2014.7032627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 First International Conference on Computational Systems and Communications (ICCSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSC.2014.7032627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

了解遗传学的作用对于疾病的深入研究是非常重要的。尽管有很多关于基因-疾病关联的信息,但即使是专家用户也很难从大量的文献中手动提取出来。因此,这项工作引入了一种新的提取工具,可以使用文本挖掘算法从文献中识别疾病相关基因。在这里,隐马尔可夫模型与基于规则的命名实体识别方法相结合,从文献中识别基因符号。这将预测该疾病的良好候选基因,这将有助于进一步分析该疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A literature search tool for identifying disease-associated genes using Hidden Markov model
Understanding the role of genetics is very important for the in-depth study of a disease. Even though lots of information about gene-disease association is available, it is difficult even for an expert user to manually extract it from the huge volume of literature. Therefore, this work introduces a novel extraction tool that can identify disease associated genes from the literature using text-mining algorithm. Here, Hidden Markov Model is combined with a rule-based Named Entity Recognition approach to identify gene symbols from the literature. This will predict the good candidate genes for the disease which will help in the further analysis of the disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信