Wojciech Maly, A. Gattiker, T. Zanon, T. Vogels, R. D. Blanton, T. Storey
{"title":"测试和屈服学习中集成电路结构的变形","authors":"Wojciech Maly, A. Gattiker, T. Zanon, T. Vogels, R. D. Blanton, T. Storey","doi":"10.1109/TEST.2003.1271071","DOIUrl":null,"url":null,"abstract":"Abstract This paper argues that the existing approaches to modelingand characterization of IC malfunctions are inadequate fortest and yield learning of Deep Sub-Micron (DSM) products.Traditional notions of a spot defect and local and global pro-cess variations are analyzed and their shortcomings areexposed. A detailed taxonomy of process-induced deforma-tions of DSM IC structures, enabling modeling and charac-terization of IC malfunctions, is proposed. The blueprint of aroadmap enabling such a characterization is suggested. Keywords : yield learning, fault modeling, defects, diagno-sis, defect characterization. 1 Introduction The motivation, purpose and overall structure of this paperhave already been explained in the abstract above. The dis-cussion of the prior and relevant publications should be thenext natural component of this paper. But it is skipped aswell, even if there exists substantial body of relevant publi-cations in the related domain (some of them are listed as ref-erences in [1,2].) It is skipped to avoid unnecessarydiscussion of the weaknesses of related results presented inthe past. Simply, majority of published papers with the ICtechnology-oriented flavour (and prime examples are the fol-lowing papers co-written by the first author of this paper [3,4, 5, 6, 7, 8]) do not offer sufficient insight into failure mech-anisms to address challenges posed by the DSM era prod-ucts. A substantial portion of this paper attempts to justify theabove, somewhat provocative claim. Then the remainingportion of the paper is used to suggest directions of theresearch, which we should undertake to truly assist test andyield learning of modern era ICs.","PeriodicalId":236182,"journal":{"name":"International Test Conference, 2003. Proceedings. ITC 2003.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Deformations of ic structure in test and yield learning\",\"authors\":\"Wojciech Maly, A. Gattiker, T. Zanon, T. Vogels, R. D. Blanton, T. Storey\",\"doi\":\"10.1109/TEST.2003.1271071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper argues that the existing approaches to modelingand characterization of IC malfunctions are inadequate fortest and yield learning of Deep Sub-Micron (DSM) products.Traditional notions of a spot defect and local and global pro-cess variations are analyzed and their shortcomings areexposed. A detailed taxonomy of process-induced deforma-tions of DSM IC structures, enabling modeling and charac-terization of IC malfunctions, is proposed. The blueprint of aroadmap enabling such a characterization is suggested. Keywords : yield learning, fault modeling, defects, diagno-sis, defect characterization. 1 Introduction The motivation, purpose and overall structure of this paperhave already been explained in the abstract above. The dis-cussion of the prior and relevant publications should be thenext natural component of this paper. But it is skipped aswell, even if there exists substantial body of relevant publi-cations in the related domain (some of them are listed as ref-erences in [1,2].) It is skipped to avoid unnecessarydiscussion of the weaknesses of related results presented inthe past. Simply, majority of published papers with the ICtechnology-oriented flavour (and prime examples are the fol-lowing papers co-written by the first author of this paper [3,4, 5, 6, 7, 8]) do not offer sufficient insight into failure mech-anisms to address challenges posed by the DSM era prod-ucts. A substantial portion of this paper attempts to justify theabove, somewhat provocative claim. Then the remainingportion of the paper is used to suggest directions of theresearch, which we should undertake to truly assist test andyield learning of modern era ICs.\",\"PeriodicalId\":236182,\"journal\":{\"name\":\"International Test Conference, 2003. Proceedings. ITC 2003.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Test Conference, 2003. Proceedings. ITC 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2003.1271071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Test Conference, 2003. Proceedings. ITC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2003.1271071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformations of ic structure in test and yield learning
Abstract This paper argues that the existing approaches to modelingand characterization of IC malfunctions are inadequate fortest and yield learning of Deep Sub-Micron (DSM) products.Traditional notions of a spot defect and local and global pro-cess variations are analyzed and their shortcomings areexposed. A detailed taxonomy of process-induced deforma-tions of DSM IC structures, enabling modeling and charac-terization of IC malfunctions, is proposed. The blueprint of aroadmap enabling such a characterization is suggested. Keywords : yield learning, fault modeling, defects, diagno-sis, defect characterization. 1 Introduction The motivation, purpose and overall structure of this paperhave already been explained in the abstract above. The dis-cussion of the prior and relevant publications should be thenext natural component of this paper. But it is skipped aswell, even if there exists substantial body of relevant publi-cations in the related domain (some of them are listed as ref-erences in [1,2].) It is skipped to avoid unnecessarydiscussion of the weaknesses of related results presented inthe past. Simply, majority of published papers with the ICtechnology-oriented flavour (and prime examples are the fol-lowing papers co-written by the first author of this paper [3,4, 5, 6, 7, 8]) do not offer sufficient insight into failure mech-anisms to address challenges posed by the DSM era prod-ucts. A substantial portion of this paper attempts to justify theabove, somewhat provocative claim. Then the remainingportion of the paper is used to suggest directions of theresearch, which we should undertake to truly assist test andyield learning of modern era ICs.