基于遗传算法的分类规则发现方法

Xian-Jun Shi, Hong Lei
{"title":"基于遗传算法的分类规则发现方法","authors":"Xian-Jun Shi, Hong Lei","doi":"10.1109/ICIII.2008.289","DOIUrl":null,"url":null,"abstract":"Data mining has as goal to extract knowledge from large databases. To extract this knowledge, a database may be considered as a large search space, and a mining algorithm as a search strategy. In general, a search space consists of an enormous number of elements, which make it is infeasible to search exhaustively. As a search strategy, genetic algorithms have been applied successfully in many fields. In this paper, we present a genetic algorithm-based approach for mining classification rules from large database. For emphasizing on predictive accuracy, comprehensibility and interestingness of the rules and simplifying the implementation of a genetic algorithm, we discuss detail the design of encoding, genetic operator and fitness function of genetic algorithm for this task. Experimental result shows that genetic algorithm proposed in this paper is suitable for classification rule mining and those rules discovered by the algorithm have higher classification performance to unknown data.","PeriodicalId":185591,"journal":{"name":"2008 International Conference on Information Management, Innovation Management and Industrial Engineering","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A Genetic Algorithm-Based Approach for Classification Rule Discovery\",\"authors\":\"Xian-Jun Shi, Hong Lei\",\"doi\":\"10.1109/ICIII.2008.289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining has as goal to extract knowledge from large databases. To extract this knowledge, a database may be considered as a large search space, and a mining algorithm as a search strategy. In general, a search space consists of an enormous number of elements, which make it is infeasible to search exhaustively. As a search strategy, genetic algorithms have been applied successfully in many fields. In this paper, we present a genetic algorithm-based approach for mining classification rules from large database. For emphasizing on predictive accuracy, comprehensibility and interestingness of the rules and simplifying the implementation of a genetic algorithm, we discuss detail the design of encoding, genetic operator and fitness function of genetic algorithm for this task. Experimental result shows that genetic algorithm proposed in this paper is suitable for classification rule mining and those rules discovered by the algorithm have higher classification performance to unknown data.\",\"PeriodicalId\":185591,\"journal\":{\"name\":\"2008 International Conference on Information Management, Innovation Management and Industrial Engineering\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Information Management, Innovation Management and Industrial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIII.2008.289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Information Management, Innovation Management and Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIII.2008.289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

数据挖掘的目标是从大型数据库中提取知识。为了提取这些知识,可以将数据库视为一个大的搜索空间,将挖掘算法视为一种搜索策略。一般来说,一个搜索空间由大量的元素组成,这使得穷尽搜索是不可行的。遗传算法作为一种搜索策略,在许多领域得到了成功的应用。本文提出了一种基于遗传算法的大型数据库分类规则挖掘方法。为了强调规则的预测准确性、可理解性和趣味性,简化遗传算法的实现,我们详细讨论了遗传算法的编码、遗传算子和适应度函数的设计。实验结果表明,本文提出的遗传算法适用于分类规则挖掘,算法发现的规则对未知数据具有较高的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Algorithm-Based Approach for Classification Rule Discovery
Data mining has as goal to extract knowledge from large databases. To extract this knowledge, a database may be considered as a large search space, and a mining algorithm as a search strategy. In general, a search space consists of an enormous number of elements, which make it is infeasible to search exhaustively. As a search strategy, genetic algorithms have been applied successfully in many fields. In this paper, we present a genetic algorithm-based approach for mining classification rules from large database. For emphasizing on predictive accuracy, comprehensibility and interestingness of the rules and simplifying the implementation of a genetic algorithm, we discuss detail the design of encoding, genetic operator and fitness function of genetic algorithm for this task. Experimental result shows that genetic algorithm proposed in this paper is suitable for classification rule mining and those rules discovered by the algorithm have higher classification performance to unknown data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信