SSFCN-DCRF:生物医学图像的语义分割

Da Chen, Junmin Wu, Shuai Gao
{"title":"SSFCN-DCRF:生物医学图像的语义分割","authors":"Da Chen, Junmin Wu, Shuai Gao","doi":"10.1145/3271553.3271612","DOIUrl":null,"url":null,"abstract":"In this paper, we present an end-to-end solution for the task of semantic biomedical image segmentation. We use skip stride Fully Convolutional Networks to output segmentation map. To further improve the performance of the semantic segmentation, we use the dense conditional random field (DCRF) layer to fine tune the segmentation map. We also apply separable operation to the Fully Convolutional Networks to get a lightweight network. We evaluate our network on Kaggle Lung CT Dataset and UCSB Bio-Segmentation Benchmark. The results show that our network achieves state of art performance on semantic segmentation for biomedical Image.","PeriodicalId":414782,"journal":{"name":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SSFCN-DCRF: Semantic Segmentation for Biomedical Image\",\"authors\":\"Da Chen, Junmin Wu, Shuai Gao\",\"doi\":\"10.1145/3271553.3271612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an end-to-end solution for the task of semantic biomedical image segmentation. We use skip stride Fully Convolutional Networks to output segmentation map. To further improve the performance of the semantic segmentation, we use the dense conditional random field (DCRF) layer to fine tune the segmentation map. We also apply separable operation to the Fully Convolutional Networks to get a lightweight network. We evaluate our network on Kaggle Lung CT Dataset and UCSB Bio-Segmentation Benchmark. The results show that our network achieves state of art performance on semantic segmentation for biomedical Image.\",\"PeriodicalId\":414782,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3271553.3271612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3271553.3271612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种端到端语义生物医学图像分割的解决方案。我们使用跳步全卷积网络输出分割图。为了进一步提高语义分割的性能,我们使用密集条件随机场(DCRF)层对分割映射进行微调。我们还将可分离运算应用到全卷积网络中,以得到一个轻量级的网络。我们在Kaggle肺CT数据集和UCSB生物分割基准上对网络进行了评估。结果表明,我们的网络在生物医学图像的语义分割上达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SSFCN-DCRF: Semantic Segmentation for Biomedical Image
In this paper, we present an end-to-end solution for the task of semantic biomedical image segmentation. We use skip stride Fully Convolutional Networks to output segmentation map. To further improve the performance of the semantic segmentation, we use the dense conditional random field (DCRF) layer to fine tune the segmentation map. We also apply separable operation to the Fully Convolutional Networks to get a lightweight network. We evaluate our network on Kaggle Lung CT Dataset and UCSB Bio-Segmentation Benchmark. The results show that our network achieves state of art performance on semantic segmentation for biomedical Image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信