基于可控突变粒子群优化的非线性稳定控制

A. Ishigame
{"title":"基于可控突变粒子群优化的非线性稳定控制","authors":"A. Ishigame","doi":"10.1109/ISIC.2007.4450962","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary PSO with a controlled mutation that is newly proposed. The PSO is able to generate an optimal set of parameters for neural controller. Then, the proposed neural controller can be satisfied the Lyapunov stability condition and is validated through numerical simulations of stabilizing control problem.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear stabilizing control based on particle swarm optimization with controlled mutation\",\"authors\":\"A. Ishigame\",\"doi\":\"10.1109/ISIC.2007.4450962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary PSO with a controlled mutation that is newly proposed. The PSO is able to generate an optimal set of parameters for neural controller. Then, the proposed neural controller can be satisfied the Lyapunov stability condition and is validated through numerical simulations of stabilizing control problem.\",\"PeriodicalId\":184867,\"journal\":{\"name\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2007.4450962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于粒子群算法和李雅普诺夫方法的神经网络非线性稳定控制器的构造方法。将学习神经网络值的过程表述为最小-最大问题。提出了一种具有可控突变的协同进化粒子群算法。该算法能够为神经控制器生成最优的参数集。然后,所提出的神经控制器能够满足Lyapunov稳定条件,并通过稳定控制问题的数值仿真进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear stabilizing control based on particle swarm optimization with controlled mutation
In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary PSO with a controlled mutation that is newly proposed. The PSO is able to generate an optimal set of parameters for neural controller. Then, the proposed neural controller can be satisfied the Lyapunov stability condition and is validated through numerical simulations of stabilizing control problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信