M. Lei, Jacqueline Zou, Justin Lee, J. Changala, B. Larzelere
{"title":"利用光学二次谐波产生法检测电活性氧间隙的热给体","authors":"M. Lei, Jacqueline Zou, Justin Lee, J. Changala, B. Larzelere","doi":"10.1109/ASMC.2018.8373208","DOIUrl":null,"url":null,"abstract":"Substrate resistivity stability has become the most critical control for radio frequency (RF) device manufacturing. In this paper, we demonstrate nonlinear optics based metrology to measure electrically active oxygen interstitial sites (Oi) in high resistive bulk Si wafers, which are vulnerable to electric and mechanical property drift during device fabrication. Time dependent second harmonic generation (TD-SHG) governed by electric-field induced second harmonic (EFISH) effect provides consistent detection of thermal donors originating from Oi distributed near Si interface. The successful concept proof can be extended to test pad design for in-line monitor of substrate resistivity variations from annealing processes.","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection of thermal donors from electrically active oxygen interstitials by optical second harmonic generation\",\"authors\":\"M. Lei, Jacqueline Zou, Justin Lee, J. Changala, B. Larzelere\",\"doi\":\"10.1109/ASMC.2018.8373208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Substrate resistivity stability has become the most critical control for radio frequency (RF) device manufacturing. In this paper, we demonstrate nonlinear optics based metrology to measure electrically active oxygen interstitial sites (Oi) in high resistive bulk Si wafers, which are vulnerable to electric and mechanical property drift during device fabrication. Time dependent second harmonic generation (TD-SHG) governed by electric-field induced second harmonic (EFISH) effect provides consistent detection of thermal donors originating from Oi distributed near Si interface. The successful concept proof can be extended to test pad design for in-line monitor of substrate resistivity variations from annealing processes.\",\"PeriodicalId\":349004,\"journal\":{\"name\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2018.8373208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of thermal donors from electrically active oxygen interstitials by optical second harmonic generation
Substrate resistivity stability has become the most critical control for radio frequency (RF) device manufacturing. In this paper, we demonstrate nonlinear optics based metrology to measure electrically active oxygen interstitial sites (Oi) in high resistive bulk Si wafers, which are vulnerable to electric and mechanical property drift during device fabrication. Time dependent second harmonic generation (TD-SHG) governed by electric-field induced second harmonic (EFISH) effect provides consistent detection of thermal donors originating from Oi distributed near Si interface. The successful concept proof can be extended to test pad design for in-line monitor of substrate resistivity variations from annealing processes.