掌握映射使用局域保持投影和kNN回归

Yun Lin, Yu Sun
{"title":"掌握映射使用局域保持投影和kNN回归","authors":"Yun Lin, Yu Sun","doi":"10.1109/ICRA.2013.6630706","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel mapping approach to map a human grasp to a robotic grasp based on human grasp motion trajectories rather than grasp poses, since the grasp trajectories of a human grasp provide more information to disambiguate between different grasp types than grasp poses. Human grasp motions usually contain complex and nonlinear patterns in a high-dimensional space. In this paper, we reduced the high-dimensionality of motion trajectories by using locality preserving projections (LPP). Then, a Hausdorff distance was performed to find the k-nearest neighbor trajectories in the reduced low-dimensional subspace, and k-nearest neighbor (kNN) regression was used to map a demonstrated grasp motion by a human hand to a robotic hand. Several experiments were designed and carried out to compare the robotic grasping trajectory generated with and without the trajectory-based mapping approach. The regression errors of the mapping results show that our approach generates more robust grasps than using only grasp poses. In addition, our approach has the ability to successfully map a grasp motion of a new grasp demonstration that has not been trained before to a robotic hand.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Grasp mapping using locality preserving projections and kNN regression\",\"authors\":\"Yun Lin, Yu Sun\",\"doi\":\"10.1109/ICRA.2013.6630706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel mapping approach to map a human grasp to a robotic grasp based on human grasp motion trajectories rather than grasp poses, since the grasp trajectories of a human grasp provide more information to disambiguate between different grasp types than grasp poses. Human grasp motions usually contain complex and nonlinear patterns in a high-dimensional space. In this paper, we reduced the high-dimensionality of motion trajectories by using locality preserving projections (LPP). Then, a Hausdorff distance was performed to find the k-nearest neighbor trajectories in the reduced low-dimensional subspace, and k-nearest neighbor (kNN) regression was used to map a demonstrated grasp motion by a human hand to a robotic hand. Several experiments were designed and carried out to compare the robotic grasping trajectory generated with and without the trajectory-based mapping approach. The regression errors of the mapping results show that our approach generates more robust grasps than using only grasp poses. In addition, our approach has the ability to successfully map a grasp motion of a new grasp demonstration that has not been trained before to a robotic hand.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6630706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们提出了一种新的映射方法,基于人类抓取运动轨迹而不是抓取姿势将人类抓取映射到机器人抓取,因为人类抓取的抓取轨迹比抓取姿势提供更多的信息来消除不同抓取类型之间的歧义。人类的抓握动作通常在高维空间中包含复杂的非线性模式。本文利用局域保持投影(LPP)降低了运动轨迹的高维数。然后,利用Hausdorff距离在降维子空间中找到k近邻轨迹,并利用k近邻(k-nearest neighbor, kNN)回归将演示的人手抓取动作映射到机器人手。设计并进行了几个实验,比较了基于轨迹映射方法和不基于轨迹映射方法生成的机器人抓取轨迹。映射结果的回归误差表明,我们的方法比只使用抓取姿势产生更鲁棒的抓取。此外,我们的方法能够成功地将以前未训练过的新抓取演示的抓取动作映射到机器人手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grasp mapping using locality preserving projections and kNN regression
In this paper, we propose a novel mapping approach to map a human grasp to a robotic grasp based on human grasp motion trajectories rather than grasp poses, since the grasp trajectories of a human grasp provide more information to disambiguate between different grasp types than grasp poses. Human grasp motions usually contain complex and nonlinear patterns in a high-dimensional space. In this paper, we reduced the high-dimensionality of motion trajectories by using locality preserving projections (LPP). Then, a Hausdorff distance was performed to find the k-nearest neighbor trajectories in the reduced low-dimensional subspace, and k-nearest neighbor (kNN) regression was used to map a demonstrated grasp motion by a human hand to a robotic hand. Several experiments were designed and carried out to compare the robotic grasping trajectory generated with and without the trajectory-based mapping approach. The regression errors of the mapping results show that our approach generates more robust grasps than using only grasp poses. In addition, our approach has the ability to successfully map a grasp motion of a new grasp demonstration that has not been trained before to a robotic hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信