特殊结构双线性系统最佳管理任务

В. А. Срочко, Vladimir Andreevich Srochko, Владимир Георгиевич Антоник, Vladimir Georgievich Antonik, Елена Аксенюшкина, E. V. Aksenyushkina
{"title":"特殊结构双线性系统最佳管理任务","authors":"В. А. Срочко, Vladimir Andreevich Srochko, Владимир Георгиевич Антоник, Vladimir Georgievich Antonik, Елена Аксенюшкина, E. V. Aksenyushkina","doi":"10.36535/0233-6723-2020-183-130-138","DOIUrl":null,"url":null,"abstract":"Рассмотрены три задачи оптимального управления (линейные, билинейные и квадратичные функционалы) для специальной билинейной системы с матрицей ранга $1$. Для первой задачи получены два варианта условий относительно начальных данных системы и функционала, при которых принцип максимума становится достаточным условием оптимальности. В этом случае задача становится очень простой: оптимальное управление определяется в процессе интегрирования фазовой или сопряженной системы (одна задача Коши). Затем рассматривается задача оптимизации билинейного функционала. Получены достаточные условия оптимальности граничных управлений без точек переключения. Эти условия представлены в виде неравенств для функций одной переменной (времени). Задача оптимального управления с квадратичным функционалом сводится к билинейному случаю на основе специальной формулы приращения.","PeriodicalId":283651,"journal":{"name":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Задачи оптимального управления для билинейной системы специальной структуры\",\"authors\":\"В. А. Срочко, Vladimir Andreevich Srochko, Владимир Георгиевич Антоник, Vladimir Georgievich Antonik, Елена Аксенюшкина, E. V. Aksenyushkina\",\"doi\":\"10.36535/0233-6723-2020-183-130-138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Рассмотрены три задачи оптимального управления (линейные, билинейные и квадратичные функционалы) для специальной билинейной системы с матрицей ранга $1$. Для первой задачи получены два варианта условий относительно начальных данных системы и функционала, при которых принцип максимума становится достаточным условием оптимальности. В этом случае задача становится очень простой: оптимальное управление определяется в процессе интегрирования фазовой или сопряженной системы (одна задача Коши). Затем рассматривается задача оптимизации билинейного функционала. Получены достаточные условия оптимальности граничных управлений без точек переключения. Эти условия представлены в виде неравенств для функций одной переменной (времени). Задача оптимального управления с квадратичным функционалом сводится к билинейному случаю на основе специальной формулы приращения.\",\"PeriodicalId\":283651,\"journal\":{\"name\":\"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36535/0233-6723-2020-183-130-138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36535/0233-6723-2020-183-130-138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最佳管理的三个目标(线性、双线性和二次函数)被考虑为一个特殊的双线性系统,排名为1美元。对于第一个问题,有两个条件相对于系统的初始数据和功能,最大值原则是最优的条件。在这种情况下,任务变得非常简单:在相或共轭系统的集成过程中定义最佳控制(一个coshi问题)。然后考虑优化双线性功能的任务。在没有切换点的情况下,边界控制的最佳状态已经达到。这些条件表示为单变量函数(时间)的不平等。具有二次功能的最佳管理任务可以归结为基于增值公式的双线性案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Задачи оптимального управления для билинейной системы специальной структуры
Рассмотрены три задачи оптимального управления (линейные, билинейные и квадратичные функционалы) для специальной билинейной системы с матрицей ранга $1$. Для первой задачи получены два варианта условий относительно начальных данных системы и функционала, при которых принцип максимума становится достаточным условием оптимальности. В этом случае задача становится очень простой: оптимальное управление определяется в процессе интегрирования фазовой или сопряженной системы (одна задача Коши). Затем рассматривается задача оптимизации билинейного функционала. Получены достаточные условия оптимальности граничных управлений без точек переключения. Эти условия представлены в виде неравенств для функций одной переменной (времени). Задача оптимального управления с квадратичным функционалом сводится к билинейному случаю на основе специальной формулы приращения.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信