混合动力气动动力系统动态仿真与实验研究

K. D. Huang, H. Nguyễn
{"title":"混合动力气动动力系统动态仿真与实验研究","authors":"K. D. Huang, H. Nguyễn","doi":"10.1155/2010/893197","DOIUrl":null,"url":null,"abstract":"A Hybrid Pneumatic Power System (HPPS) has been developed for several years with the major aim of reducing the vehicle fuel consumption, environment pollution and enhancing the vehicle performance as well. Comparing with the conventional hybrid system, HPPS replaces the battery's electrochemical energy with a high-pressure air storage tank and enables the internal combustion engine (ICE) to function at its sweet spot. Besides, the HPPS, which effectively merges both the high-pressure air flow from the storage tank and the recycled exhaust flow from the ICE, thereby increases the thermal efficiency of the ICE and transforms the merged flow energy into mechanical energy using a high-efficiency turbine. This paper focuses on the major research process into HPPSs, including overall dynamic simulation and experimental validation. By using the simulation tool ITI-Sim, this research demonstrates an experiment which can be operated precisely according to the requirements of various driving conditions under which a car actually runs on the road in accordance with the regulated running vehicle test mode. HPPS is expected to increase the performance of the entire system from 15% to 39%, and is likely to replace the traditional system in the coming years.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect of Dynamic Simulation and Experimental Research Studies on Hybrid Pneumatic Power System\",\"authors\":\"K. D. Huang, H. Nguyễn\",\"doi\":\"10.1155/2010/893197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Hybrid Pneumatic Power System (HPPS) has been developed for several years with the major aim of reducing the vehicle fuel consumption, environment pollution and enhancing the vehicle performance as well. Comparing with the conventional hybrid system, HPPS replaces the battery's electrochemical energy with a high-pressure air storage tank and enables the internal combustion engine (ICE) to function at its sweet spot. Besides, the HPPS, which effectively merges both the high-pressure air flow from the storage tank and the recycled exhaust flow from the ICE, thereby increases the thermal efficiency of the ICE and transforms the merged flow energy into mechanical energy using a high-efficiency turbine. This paper focuses on the major research process into HPPSs, including overall dynamic simulation and experimental validation. By using the simulation tool ITI-Sim, this research demonstrates an experiment which can be operated precisely according to the requirements of various driving conditions under which a car actually runs on the road in accordance with the regulated running vehicle test mode. HPPS is expected to increase the performance of the entire system from 15% to 39%, and is likely to replace the traditional system in the coming years.\",\"PeriodicalId\":269774,\"journal\":{\"name\":\"International Journal of Vehicular Technology\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2010/893197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/893197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混合动力气动动力系统(HPPS)是近年来发展起来的一种新型动力系统,其主要目的是降低汽车燃油消耗、降低环境污染、提高汽车性能。与传统的混合动力系统相比,HPPS用高压储气罐取代了电池的电化学能量,使内燃机(ICE)能够在最佳位置工作。此外,HPPS有效地融合了来自储气罐的高压气流和来自ICE的回收废气流,从而提高了ICE的热效率,并通过高效涡轮将合并的流能转化为机械能。本文重点介绍了hpps的主要研究过程,包括总体动态仿真和实验验证。本研究利用仿真工具ti - sim,根据汽车实际在道路上行驶的各种行驶条件的要求,按照规定的行驶车辆试验模式,进行了一项可以精确操作的实验。HPPS有望将整个系统的性能从15%提高到39%,并有可能在未来几年内取代传统系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect of Dynamic Simulation and Experimental Research Studies on Hybrid Pneumatic Power System
A Hybrid Pneumatic Power System (HPPS) has been developed for several years with the major aim of reducing the vehicle fuel consumption, environment pollution and enhancing the vehicle performance as well. Comparing with the conventional hybrid system, HPPS replaces the battery's electrochemical energy with a high-pressure air storage tank and enables the internal combustion engine (ICE) to function at its sweet spot. Besides, the HPPS, which effectively merges both the high-pressure air flow from the storage tank and the recycled exhaust flow from the ICE, thereby increases the thermal efficiency of the ICE and transforms the merged flow energy into mechanical energy using a high-efficiency turbine. This paper focuses on the major research process into HPPSs, including overall dynamic simulation and experimental validation. By using the simulation tool ITI-Sim, this research demonstrates an experiment which can be operated precisely according to the requirements of various driving conditions under which a car actually runs on the road in accordance with the regulated running vehicle test mode. HPPS is expected to increase the performance of the entire system from 15% to 39%, and is likely to replace the traditional system in the coming years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信