{"title":"人字拖的速度有多快?","authors":"M. Greenstreet, P. Cahoon","doi":"10.1109/ASYNC.1994.656288","DOIUrl":null,"url":null,"abstract":"This paper describes an experimental investigation of the application of dynamical systems theory to the verification of digital VLSI circuits. We analyze the behavior of a nine-transistor toggle element using a simple, SPICE-like model. We show how such properties as minimum and maximum clock frequency can be identified from topological features of solutions to the corresponding system of differential equations. This dynamical systems perspective also gives a clear, continuous-model interpretations of such phenomena as dynamic storage and timing hazards.","PeriodicalId":114048,"journal":{"name":"Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"How fast will the flip flop?\",\"authors\":\"M. Greenstreet, P. Cahoon\",\"doi\":\"10.1109/ASYNC.1994.656288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an experimental investigation of the application of dynamical systems theory to the verification of digital VLSI circuits. We analyze the behavior of a nine-transistor toggle element using a simple, SPICE-like model. We show how such properties as minimum and maximum clock frequency can be identified from topological features of solutions to the corresponding system of differential equations. This dynamical systems perspective also gives a clear, continuous-model interpretations of such phenomena as dynamic storage and timing hazards.\",\"PeriodicalId\":114048,\"journal\":{\"name\":\"Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.1994.656288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.1994.656288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes an experimental investigation of the application of dynamical systems theory to the verification of digital VLSI circuits. We analyze the behavior of a nine-transistor toggle element using a simple, SPICE-like model. We show how such properties as minimum and maximum clock frequency can be identified from topological features of solutions to the corresponding system of differential equations. This dynamical systems perspective also gives a clear, continuous-model interpretations of such phenomena as dynamic storage and timing hazards.