基于粒子滤波自适应模型的机动目标跟踪

Z. Liu, Jie Cao, Zhanting Yuan
{"title":"基于粒子滤波自适应模型的机动目标跟踪","authors":"Z. Liu, Jie Cao, Zhanting Yuan","doi":"10.1109/ISA.2011.5873268","DOIUrl":null,"url":null,"abstract":"Maneuvering target tracking is a big challenge to the performance of a visual tracker. The paper proposes a method to keep the tracker robust to target maneuvering by selecting discriminative features from a large feature space, and constructing a velocity motion model with adaptive noise variance. Furthermore, the feature selection procedure is embedded into the particle filtering process with the aid of calculating the Bhattacharyya distance. Top-ranked discriminative features are selected into the observation model and simultaneously invalid features are removed out to adjust the object representation adaptively. The adaptive motion model is computed via a first-order linear predictor using the previous particle configuration. Experimental results on tracking basketball in video sequences demonstrate the effectiveness and robustness of our algorithm.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maneuvering Target Tracking Using Adaptive Models in a Particle Filter\",\"authors\":\"Z. Liu, Jie Cao, Zhanting Yuan\",\"doi\":\"10.1109/ISA.2011.5873268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maneuvering target tracking is a big challenge to the performance of a visual tracker. The paper proposes a method to keep the tracker robust to target maneuvering by selecting discriminative features from a large feature space, and constructing a velocity motion model with adaptive noise variance. Furthermore, the feature selection procedure is embedded into the particle filtering process with the aid of calculating the Bhattacharyya distance. Top-ranked discriminative features are selected into the observation model and simultaneously invalid features are removed out to adjust the object representation adaptively. The adaptive motion model is computed via a first-order linear predictor using the previous particle configuration. Experimental results on tracking basketball in video sequences demonstrate the effectiveness and robustness of our algorithm.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机动目标跟踪对视觉跟踪器的性能是一个很大的挑战。本文提出了一种从大特征空间中选择判别特征,并构造具有自适应噪声方差的速度运动模型,以保持跟踪器对目标机动的鲁棒性的方法。此外,通过计算Bhattacharyya距离将特征选择过程嵌入到粒子滤波过程中。该方法将高阶判别特征选择到观测模型中,同时剔除无效特征,自适应调整对象表示。自适应运动模型是通过一阶线性预测器利用先前的粒子配置计算的。在视频序列中跟踪篮球的实验结果表明了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maneuvering Target Tracking Using Adaptive Models in a Particle Filter
Maneuvering target tracking is a big challenge to the performance of a visual tracker. The paper proposes a method to keep the tracker robust to target maneuvering by selecting discriminative features from a large feature space, and constructing a velocity motion model with adaptive noise variance. Furthermore, the feature selection procedure is embedded into the particle filtering process with the aid of calculating the Bhattacharyya distance. Top-ranked discriminative features are selected into the observation model and simultaneously invalid features are removed out to adjust the object representation adaptively. The adaptive motion model is computed via a first-order linear predictor using the previous particle configuration. Experimental results on tracking basketball in video sequences demonstrate the effectiveness and robustness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信