使用基于小键项集的关联规则构建分类器

V. Phan-Luong, Rabah Messouci
{"title":"使用基于小键项集的关联规则构建分类器","authors":"V. Phan-Luong, Rabah Messouci","doi":"10.1109/ICDIM.2007.4444223","DOIUrl":null,"url":null,"abstract":"We present a simple method for building classifiers based on class-association rules. The method uses a prefix tree structure for mining the frequent itemsets and class- association rules extracted from a training dataset. The rules of a classifier are selected from those built on key item-sets with small sizes, having maximal confidences and maximal supports, and correctly classifying each object of the training dataset. The comparisons with some existing methods in classification, via the experimental results on large datasets, show that on average the present method is better in terms of accuracy and computational efficiency.","PeriodicalId":198626,"journal":{"name":"2007 2nd International Conference on Digital Information Management","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Building classifiers with association rules based on small key itemsets\",\"authors\":\"V. Phan-Luong, Rabah Messouci\",\"doi\":\"10.1109/ICDIM.2007.4444223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple method for building classifiers based on class-association rules. The method uses a prefix tree structure for mining the frequent itemsets and class- association rules extracted from a training dataset. The rules of a classifier are selected from those built on key item-sets with small sizes, having maximal confidences and maximal supports, and correctly classifying each object of the training dataset. The comparisons with some existing methods in classification, via the experimental results on large datasets, show that on average the present method is better in terms of accuracy and computational efficiency.\",\"PeriodicalId\":198626,\"journal\":{\"name\":\"2007 2nd International Conference on Digital Information Management\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2007.4444223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2007.4444223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于类关联规则构建分类器的简单方法。该方法使用前缀树结构挖掘从训练数据集中提取的频繁项集和类关联规则。分类器的规则是从建立在小尺寸、具有最大置信度和最大支持度的关键项集上的规则中选择的,并且正确分类训练数据集的每个对象。通过在大数据集上的实验结果,与现有的一些分类方法进行了比较,结果表明,本方法在准确率和计算效率方面总体上有较好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building classifiers with association rules based on small key itemsets
We present a simple method for building classifiers based on class-association rules. The method uses a prefix tree structure for mining the frequent itemsets and class- association rules extracted from a training dataset. The rules of a classifier are selected from those built on key item-sets with small sizes, having maximal confidences and maximal supports, and correctly classifying each object of the training dataset. The comparisons with some existing methods in classification, via the experimental results on large datasets, show that on average the present method is better in terms of accuracy and computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信