{"title":"冲突解决中的比较分析:计算机语音合成与人类语音产生的观点","authors":"Okpala Izunna Udebuana","doi":"10.11648/J.IJES.20190301.16","DOIUrl":null,"url":null,"abstract":"Conflict is inevitable when it comes to communication between people from diverse background and settings. Computer systems also experience conflicts in form of bugs. Most naturally, before conflict of any sort occurs, be it ideas or perception, there must be some form of communication. Speech is one of the oldest and most natural means of information exchange between human beings. Humans speak and listen to each other in human-human interface in order to resolve certain conflicts, but computers speak to humans in a computer-human interface. The echo that comes out of a given speech might be understood or perceived differently when presented to different people. This paper is based on a comparative approach and focuses on given a run-down of the successes recorded in conflict resolution using human speech production in contrast to computer speech production. The author registers the conflict resolution practices in computers using a try-catch block pseudocode, its effectiveness in conflict resolution, plus the properties it lacks, and then, compares it to that of human functions as regards conflict resolution, in order to find a better approach. The methodology employed in this research is qualitative in nature. The author explores the stages and techniques of applying an artificial Intelligence system that scans through a given speech production and also how the brain processes information before it is finally voiced out.","PeriodicalId":410077,"journal":{"name":"International Journal of European Studies","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis in Conflict Resolution: Computer Speech Synthesis and Humans Speech Production in View\",\"authors\":\"Okpala Izunna Udebuana\",\"doi\":\"10.11648/J.IJES.20190301.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conflict is inevitable when it comes to communication between people from diverse background and settings. Computer systems also experience conflicts in form of bugs. Most naturally, before conflict of any sort occurs, be it ideas or perception, there must be some form of communication. Speech is one of the oldest and most natural means of information exchange between human beings. Humans speak and listen to each other in human-human interface in order to resolve certain conflicts, but computers speak to humans in a computer-human interface. The echo that comes out of a given speech might be understood or perceived differently when presented to different people. This paper is based on a comparative approach and focuses on given a run-down of the successes recorded in conflict resolution using human speech production in contrast to computer speech production. The author registers the conflict resolution practices in computers using a try-catch block pseudocode, its effectiveness in conflict resolution, plus the properties it lacks, and then, compares it to that of human functions as regards conflict resolution, in order to find a better approach. The methodology employed in this research is qualitative in nature. The author explores the stages and techniques of applying an artificial Intelligence system that scans through a given speech production and also how the brain processes information before it is finally voiced out.\",\"PeriodicalId\":410077,\"journal\":{\"name\":\"International Journal of European Studies\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of European Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJES.20190301.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of European Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJES.20190301.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Analysis in Conflict Resolution: Computer Speech Synthesis and Humans Speech Production in View
Conflict is inevitable when it comes to communication between people from diverse background and settings. Computer systems also experience conflicts in form of bugs. Most naturally, before conflict of any sort occurs, be it ideas or perception, there must be some form of communication. Speech is one of the oldest and most natural means of information exchange between human beings. Humans speak and listen to each other in human-human interface in order to resolve certain conflicts, but computers speak to humans in a computer-human interface. The echo that comes out of a given speech might be understood or perceived differently when presented to different people. This paper is based on a comparative approach and focuses on given a run-down of the successes recorded in conflict resolution using human speech production in contrast to computer speech production. The author registers the conflict resolution practices in computers using a try-catch block pseudocode, its effectiveness in conflict resolution, plus the properties it lacks, and then, compares it to that of human functions as regards conflict resolution, in order to find a better approach. The methodology employed in this research is qualitative in nature. The author explores the stages and techniques of applying an artificial Intelligence system that scans through a given speech production and also how the brain processes information before it is finally voiced out.