应变对硅纳米线场效应管空穴电流的影响

H. Minari, T. Kitayama, Masahiro Yamamoto, N. Mori
{"title":"应变对硅纳米线场效应管空穴电流的影响","authors":"H. Minari, T. Kitayama, Masahiro Yamamoto, N. Mori","doi":"10.1109/SISPAD.2010.5604528","DOIUrl":null,"url":null,"abstract":"Hole transport simulation based on the nonequilibrium Green's function and tight-binding formalism has been performed for strained Si nanowire FETs with a diameter of 1.5nm and 2.5 nm. Simulation results show that for Si nanowire FETs with a diameter of 2.5 nm, the compressive strain enhances the ballistic hole current, while the tensile strain gives opposite results. For Si nanowire FETs with a diameter of 1.5 nm, the ballistic hole current hardly depends on the strain magnitude.","PeriodicalId":331098,"journal":{"name":"2010 International Conference on Simulation of Semiconductor Processes and Devices","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strain effects on hole current in silicon nanowire FETs\",\"authors\":\"H. Minari, T. Kitayama, Masahiro Yamamoto, N. Mori\",\"doi\":\"10.1109/SISPAD.2010.5604528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hole transport simulation based on the nonequilibrium Green's function and tight-binding formalism has been performed for strained Si nanowire FETs with a diameter of 1.5nm and 2.5 nm. Simulation results show that for Si nanowire FETs with a diameter of 2.5 nm, the compressive strain enhances the ballistic hole current, while the tensile strain gives opposite results. For Si nanowire FETs with a diameter of 1.5 nm, the ballistic hole current hardly depends on the strain magnitude.\",\"PeriodicalId\":331098,\"journal\":{\"name\":\"2010 International Conference on Simulation of Semiconductor Processes and Devices\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Simulation of Semiconductor Processes and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2010.5604528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Simulation of Semiconductor Processes and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2010.5604528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对直径分别为1.5nm和2.5 nm的应变硅纳米线场效应管进行了基于非平衡格林函数和紧束缚形式的空穴输运模拟。仿真结果表明,对于直径为2.5 nm的硅纳米线场效应管,压缩应变增强了弹孔电流,而拉伸应变增强了弹孔电流。对于直径为1.5 nm的硅纳米线场效应管,弹孔电流几乎不受应变大小的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain effects on hole current in silicon nanowire FETs
Hole transport simulation based on the nonequilibrium Green's function and tight-binding formalism has been performed for strained Si nanowire FETs with a diameter of 1.5nm and 2.5 nm. Simulation results show that for Si nanowire FETs with a diameter of 2.5 nm, the compressive strain enhances the ballistic hole current, while the tensile strain gives opposite results. For Si nanowire FETs with a diameter of 1.5 nm, the ballistic hole current hardly depends on the strain magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信