一种用于手指康复和脑想象研究的磁共振兼容装置的机械设计

Z. Tang, S. Sugano, H. Iwata
{"title":"一种用于手指康复和脑想象研究的磁共振兼容装置的机械设计","authors":"Z. Tang, S. Sugano, H. Iwata","doi":"10.1109/ROBIO.2012.6491248","DOIUrl":null,"url":null,"abstract":"This paper presents the design, fabricate and evaluation of a Magnetic Resonance compatible finger rehabilitation device, which could not only be used as a finger rehabilitation training tool after stroke, but also to study the brain's recovery process during the rehabilitation therapy (ReT). The mechanics of this device are designed to be adjustable to different persons' finger phalanges, and also the gap between one finger to another can be easily changed. By using an ultrasonic motor as its actuator, the device has been designed to be portable, with a high torque output. In addition, the mechanical has been developed into two working models (passive and active) in order to overcome the intrinsic shortage of non-back drivability in ultrasonic motor. The result system enables the client to do extension and flexion rehabilitation exercises in two degrees of freedom (DOF) for each finger as well as one DOF motion on the thumb. Finally, experiment has been carried out to evaluate the performance of the device.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical design of a magnetic resonance compatible device used for finger rehabilitation and brain imagine studying\",\"authors\":\"Z. Tang, S. Sugano, H. Iwata\",\"doi\":\"10.1109/ROBIO.2012.6491248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, fabricate and evaluation of a Magnetic Resonance compatible finger rehabilitation device, which could not only be used as a finger rehabilitation training tool after stroke, but also to study the brain's recovery process during the rehabilitation therapy (ReT). The mechanics of this device are designed to be adjustable to different persons' finger phalanges, and also the gap between one finger to another can be easily changed. By using an ultrasonic motor as its actuator, the device has been designed to be portable, with a high torque output. In addition, the mechanical has been developed into two working models (passive and active) in order to overcome the intrinsic shortage of non-back drivability in ultrasonic motor. The result system enables the client to do extension and flexion rehabilitation exercises in two degrees of freedom (DOF) for each finger as well as one DOF motion on the thumb. Finally, experiment has been carried out to evaluate the performance of the device.\",\"PeriodicalId\":426468,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2012.6491248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种磁共振兼容手指康复装置的设计、制作和评价,该装置不仅可以作为脑卒中后手指康复训练的工具,还可以研究脑康复治疗过程中大脑的恢复过程。该装置的结构可以根据不同人的指骨进行调整,而且手指之间的间隙也可以很容易地改变。通过使用超声波电机作为驱动器,该设备被设计成便携的,具有高扭矩输出。此外,为了克服超声电机非反向驱动性的固有不足,机械结构已发展为被动和主动两种工作模式。结果系统使患者能够在每个手指的两个自由度(DOF)以及拇指的一个自由度运动中进行伸展和屈曲康复练习。最后,通过实验对该装置的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical design of a magnetic resonance compatible device used for finger rehabilitation and brain imagine studying
This paper presents the design, fabricate and evaluation of a Magnetic Resonance compatible finger rehabilitation device, which could not only be used as a finger rehabilitation training tool after stroke, but also to study the brain's recovery process during the rehabilitation therapy (ReT). The mechanics of this device are designed to be adjustable to different persons' finger phalanges, and also the gap between one finger to another can be easily changed. By using an ultrasonic motor as its actuator, the device has been designed to be portable, with a high torque output. In addition, the mechanical has been developed into two working models (passive and active) in order to overcome the intrinsic shortage of non-back drivability in ultrasonic motor. The result system enables the client to do extension and flexion rehabilitation exercises in two degrees of freedom (DOF) for each finger as well as one DOF motion on the thumb. Finally, experiment has been carried out to evaluate the performance of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信