经850°C-5H高温淬火处理后的57Fe15Cr25Ni0.32Mn0.96Si奥氏体钢的微晶结构

P. Parikin, Rudi Rudi, S. Sumaryo, S. Ahda
{"title":"经850°C-5H高温淬火处理后的57Fe15Cr25Ni0.32Mn0.96Si奥氏体钢的微晶结构","authors":"P. Parikin, Rudi Rudi, S. Sumaryo, S. Ahda","doi":"10.17146/JSMI.2018.20.1.5407","DOIUrl":null,"url":null,"abstract":"MICRO-CRYSTAL STRUCTURE OF 57Fe15Cr25Ni0.32Mn0.96Si AUSTENITE STEEL AFTER 850°C-5H TEMPERATURE-QUENCHING TREATMENTS FOR HIGH TEMPERATURE MATERIAL APPLICATIONS. A serial austenite stainless steel, namely A2-type, has been synthesized by using casting technique at temperature more than 1250 °C in the induction furnace that used an electromagnetic inductive-thermal system. The steel is dedicated for structural component material in multi-purpose applications such as in high-temperature operating environments. So, the material must be resistant to mechanical loads, high temperature, corrosion and irradiation. In order to increase the strength of materials, temperature-quenching treatments are required in some cooling media. Mineral element was extracted from crude ores of Indonesian mines and commercial scrap materials, i.e: ferro scrap, ferro chrome, nickel, manganese, and ferro silicon; all of them in granular shape were prepared to alloy the steel. Titanium was not added to this austenite low carbon steel. The OES-chemical composition in %wt of the materials is 57%Fe, 15%Cr, 25%Ni, 0.34%C and less than 0.1% of impurities that comprised of: titanium, phosphor, copper, niobium and sulphur elements in the steel. X-ray diffraction pattern shows that ascast material had an fcc crystal structure with lattice parameter of 3.632 Å. Meanwhile, two of samples, i.e: annealing and oil quench, have strictly similar lattice parameter to that of air (normalizing) quench (3.580 Å). On the other hand, the lattice parameter of water quenched samples has a slightly lower lattice parameter than the ascast lattice , i.e. 3.587 Å. The peak shift of (111) and (200) -plane in the diffraction profile, is very significant, approximately 0.63 degrees between ascast sample and the last two samples. Ascast microstructure reveals that the austenite phase grains look large and describe an undeformed structure, with an average grain size of about 6 mm, while the annealed sample was larger. Air- and oil- quenched sample microstructures showed a fine grain which was very different to water quenched sample microstructure that showed a coarse grain. The viscousity (h) of the quenching medium had an important role in the formation of grain boundary, because the rate of decreasing temperature was heavily influenced by the diffusion of heat from the high to low temperature spaces.","PeriodicalId":365391,"journal":{"name":"Jurnal Sains Materi Indonesia","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MICRO-CRYSTAL STRUCTURE OF 57Fe15Cr25Ni0.32Mn0.96Si AUSTENITE STEEL AFTER 850°C-5H TEMPERATURE-QUENCHING TREATMENTS FOR HIGH TEMPERATURE MATERIAL APPLICATIONS\",\"authors\":\"P. Parikin, Rudi Rudi, S. Sumaryo, S. Ahda\",\"doi\":\"10.17146/JSMI.2018.20.1.5407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MICRO-CRYSTAL STRUCTURE OF 57Fe15Cr25Ni0.32Mn0.96Si AUSTENITE STEEL AFTER 850°C-5H TEMPERATURE-QUENCHING TREATMENTS FOR HIGH TEMPERATURE MATERIAL APPLICATIONS. A serial austenite stainless steel, namely A2-type, has been synthesized by using casting technique at temperature more than 1250 °C in the induction furnace that used an electromagnetic inductive-thermal system. The steel is dedicated for structural component material in multi-purpose applications such as in high-temperature operating environments. So, the material must be resistant to mechanical loads, high temperature, corrosion and irradiation. In order to increase the strength of materials, temperature-quenching treatments are required in some cooling media. Mineral element was extracted from crude ores of Indonesian mines and commercial scrap materials, i.e: ferro scrap, ferro chrome, nickel, manganese, and ferro silicon; all of them in granular shape were prepared to alloy the steel. Titanium was not added to this austenite low carbon steel. The OES-chemical composition in %wt of the materials is 57%Fe, 15%Cr, 25%Ni, 0.34%C and less than 0.1% of impurities that comprised of: titanium, phosphor, copper, niobium and sulphur elements in the steel. X-ray diffraction pattern shows that ascast material had an fcc crystal structure with lattice parameter of 3.632 Å. Meanwhile, two of samples, i.e: annealing and oil quench, have strictly similar lattice parameter to that of air (normalizing) quench (3.580 Å). On the other hand, the lattice parameter of water quenched samples has a slightly lower lattice parameter than the ascast lattice , i.e. 3.587 Å. The peak shift of (111) and (200) -plane in the diffraction profile, is very significant, approximately 0.63 degrees between ascast sample and the last two samples. Ascast microstructure reveals that the austenite phase grains look large and describe an undeformed structure, with an average grain size of about 6 mm, while the annealed sample was larger. Air- and oil- quenched sample microstructures showed a fine grain which was very different to water quenched sample microstructure that showed a coarse grain. The viscousity (h) of the quenching medium had an important role in the formation of grain boundary, because the rate of decreasing temperature was heavily influenced by the diffusion of heat from the high to low temperature spaces.\",\"PeriodicalId\":365391,\"journal\":{\"name\":\"Jurnal Sains Materi Indonesia\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sains Materi Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17146/JSMI.2018.20.1.5407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains Materi Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17146/JSMI.2018.20.1.5407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经850°C-5H高温淬火处理后的57Fe15Cr25Ni0.32Mn0.96Si奥氏体钢的微晶结构。在采用电磁感应热系统的感应炉中,在1250℃以上的温度下,采用铸造工艺合成了系列奥氏体不锈钢a2型。该钢专门用于高温工作环境等多用途应用的结构部件材料。因此,材料必须耐机械载荷、耐高温、耐腐蚀和耐辐照。为了提高材料的强度,在某些冷却介质中需要进行温度淬火处理。从印尼矿山的原矿和商业废料中提取矿物元素,即废铁、铬铁、镍、锰、硅铁;它们均呈颗粒状,用于钢的合金化。这种奥氏体低碳钢没有添加钛。材料中%wt的oes -化学成分为57%Fe, 15%Cr, 25%Ni, 0.34%C,杂质小于0.1%,由钢中的钛、磷、铜、铌和硫元素组成。x射线衍射图显示,铸态材料具有fcc晶体结构,晶格参数为3.632 Å。同时,退火和油淬两种样品的晶格参数与空气(正火)淬火的晶格参数严格相似(3.580 Å)。另一方面,水淬样品的晶格参数略低于铸造晶格,为3.587 Å。衍射剖面(111)和(200)平面的峰移非常显著,前两个样品与后两个样品之间的峰移约为0.63度。铸态组织显示,奥氏体相晶粒较大,为未变形组织,平均晶粒尺寸约为6 mm,退火后晶粒较大。气淬和油淬试样的显微组织表现为细晶粒,而水淬试样的显微组织表现为粗晶粒。淬火介质的粘度(h)对晶界的形成起着重要作用,因为温度下降的速度受到高温空间向低温空间扩散的严重影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MICRO-CRYSTAL STRUCTURE OF 57Fe15Cr25Ni0.32Mn0.96Si AUSTENITE STEEL AFTER 850°C-5H TEMPERATURE-QUENCHING TREATMENTS FOR HIGH TEMPERATURE MATERIAL APPLICATIONS
MICRO-CRYSTAL STRUCTURE OF 57Fe15Cr25Ni0.32Mn0.96Si AUSTENITE STEEL AFTER 850°C-5H TEMPERATURE-QUENCHING TREATMENTS FOR HIGH TEMPERATURE MATERIAL APPLICATIONS. A serial austenite stainless steel, namely A2-type, has been synthesized by using casting technique at temperature more than 1250 °C in the induction furnace that used an electromagnetic inductive-thermal system. The steel is dedicated for structural component material in multi-purpose applications such as in high-temperature operating environments. So, the material must be resistant to mechanical loads, high temperature, corrosion and irradiation. In order to increase the strength of materials, temperature-quenching treatments are required in some cooling media. Mineral element was extracted from crude ores of Indonesian mines and commercial scrap materials, i.e: ferro scrap, ferro chrome, nickel, manganese, and ferro silicon; all of them in granular shape were prepared to alloy the steel. Titanium was not added to this austenite low carbon steel. The OES-chemical composition in %wt of the materials is 57%Fe, 15%Cr, 25%Ni, 0.34%C and less than 0.1% of impurities that comprised of: titanium, phosphor, copper, niobium and sulphur elements in the steel. X-ray diffraction pattern shows that ascast material had an fcc crystal structure with lattice parameter of 3.632 Å. Meanwhile, two of samples, i.e: annealing and oil quench, have strictly similar lattice parameter to that of air (normalizing) quench (3.580 Å). On the other hand, the lattice parameter of water quenched samples has a slightly lower lattice parameter than the ascast lattice , i.e. 3.587 Å. The peak shift of (111) and (200) -plane in the diffraction profile, is very significant, approximately 0.63 degrees between ascast sample and the last two samples. Ascast microstructure reveals that the austenite phase grains look large and describe an undeformed structure, with an average grain size of about 6 mm, while the annealed sample was larger. Air- and oil- quenched sample microstructures showed a fine grain which was very different to water quenched sample microstructure that showed a coarse grain. The viscousity (h) of the quenching medium had an important role in the formation of grain boundary, because the rate of decreasing temperature was heavily influenced by the diffusion of heat from the high to low temperature spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信