{"title":"基于原型的广义LDPC码的精确擦除信道密度演化","authors":"M. Lentmaier, M. Tavares, G. Fettweis","doi":"10.1109/ISIT.2009.5205688","DOIUrl":null,"url":null,"abstract":"We derive explicit density evolution equations for protograph-based generalized LDPC codes on the binary erasure channel. They are obtained from an analysis of multi-dimensional input/output transfer functions of the component decoders. Belief propagation decoding with optimal component APP decoders is considered. Based on the resulting transfer functions, a threshold analysis is performed for some protograph examples.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Exact erasure channel density evolution for protograph-based generalized LDPC codes\",\"authors\":\"M. Lentmaier, M. Tavares, G. Fettweis\",\"doi\":\"10.1109/ISIT.2009.5205688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive explicit density evolution equations for protograph-based generalized LDPC codes on the binary erasure channel. They are obtained from an analysis of multi-dimensional input/output transfer functions of the component decoders. Belief propagation decoding with optimal component APP decoders is considered. Based on the resulting transfer functions, a threshold analysis is performed for some protograph examples.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exact erasure channel density evolution for protograph-based generalized LDPC codes
We derive explicit density evolution equations for protograph-based generalized LDPC codes on the binary erasure channel. They are obtained from an analysis of multi-dimensional input/output transfer functions of the component decoders. Belief propagation decoding with optimal component APP decoders is considered. Based on the resulting transfer functions, a threshold analysis is performed for some protograph examples.