基于子空间的低复杂度二维多目标到达方向跟踪

Chang-yun Liu, Guangmin Wang, J. Xin, Jiasong Wang, Nanning Zheng, A. Sano
{"title":"基于子空间的低复杂度二维多目标到达方向跟踪","authors":"Chang-yun Liu, Guangmin Wang, J. Xin, Jiasong Wang, Nanning Zheng, A. Sano","doi":"10.1109/ICOSP.2012.6491935","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of tracking the two-dimensional (2-D) direction-of-arrivals (DOAs) (i.e., azimuth and elevation angles) of multiple moving targets with crossover points on their trajectories, and we propose an new computationally efficient subspace-based 2-D DOA tracking algorithm for the L-shaped sensor array structured by two uniform linear arrays (ULAs). First, a new computationally efficient cross-correlation based 2-D DOA estimation with automatic pair-matching (CODEC) batch method is developed for noncoherent narrowband signals, where the computationally expensive procedures of eigendecomposition in subspace estimation and pair-matching of the estimated azimuth and elevation angles are avoided. Then a new 2-D DOA tracking algorithm is proposed, the association of the estimated azimuth and elevation angles at two successive time instants is accomplished by employing a dynamic mode and the Luenberger state observer. The simulation results show that the proposed tracking algorithm has good adaptability and tracking capability.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low complexity subspace-based two-dimensional direction-of-arrivals tracking of multiple targets\",\"authors\":\"Chang-yun Liu, Guangmin Wang, J. Xin, Jiasong Wang, Nanning Zheng, A. Sano\",\"doi\":\"10.1109/ICOSP.2012.6491935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of tracking the two-dimensional (2-D) direction-of-arrivals (DOAs) (i.e., azimuth and elevation angles) of multiple moving targets with crossover points on their trajectories, and we propose an new computationally efficient subspace-based 2-D DOA tracking algorithm for the L-shaped sensor array structured by two uniform linear arrays (ULAs). First, a new computationally efficient cross-correlation based 2-D DOA estimation with automatic pair-matching (CODEC) batch method is developed for noncoherent narrowband signals, where the computationally expensive procedures of eigendecomposition in subspace estimation and pair-matching of the estimated azimuth and elevation angles are avoided. Then a new 2-D DOA tracking algorithm is proposed, the association of the estimated azimuth and elevation angles at two successive time instants is accomplished by employing a dynamic mode and the Luenberger state observer. The simulation results show that the proposed tracking algorithm has good adaptability and tracking capability.\",\"PeriodicalId\":143331,\"journal\":{\"name\":\"2012 IEEE 11th International Conference on Signal Processing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 11th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2012.6491935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6491935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对多运动目标轨迹上有交点的二维到达方向(即方位角和仰角)跟踪问题,针对由两个均匀线性阵列构成的l型传感器阵列,提出了一种新的计算效率高的基于子空间的二维到达方向跟踪算法。首先,针对非相干窄带信号,提出了一种新的基于互相关的自动对匹配(CODEC)批处理的二维DOA估计方法,该方法避免了子空间估计中特征分解和估计方位角和仰角对匹配的计算昂贵过程。然后提出了一种新的二维DOA跟踪算法,利用动态模式和Luenberger状态观测器实现了两个连续时刻估计的方位角和仰角的关联。仿真结果表明,所提出的跟踪算法具有良好的自适应性和跟踪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low complexity subspace-based two-dimensional direction-of-arrivals tracking of multiple targets
This paper deals with the problem of tracking the two-dimensional (2-D) direction-of-arrivals (DOAs) (i.e., azimuth and elevation angles) of multiple moving targets with crossover points on their trajectories, and we propose an new computationally efficient subspace-based 2-D DOA tracking algorithm for the L-shaped sensor array structured by two uniform linear arrays (ULAs). First, a new computationally efficient cross-correlation based 2-D DOA estimation with automatic pair-matching (CODEC) batch method is developed for noncoherent narrowband signals, where the computationally expensive procedures of eigendecomposition in subspace estimation and pair-matching of the estimated azimuth and elevation angles are avoided. Then a new 2-D DOA tracking algorithm is proposed, the association of the estimated azimuth and elevation angles at two successive time instants is accomplished by employing a dynamic mode and the Luenberger state observer. The simulation results show that the proposed tracking algorithm has good adaptability and tracking capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信