跳跃机器人在飞行阶段的不连续反馈镇定

F. Rehman
{"title":"跳跃机器人在飞行阶段的不连续反馈镇定","authors":"F. Rehman","doi":"10.1109/INMIC.2001.995335","DOIUrl":null,"url":null,"abstract":"A systematic approach to the construction of feedback control for set point stabilization is presented for a model of a hopping robot in flight phase. The feedback controls are piece-wise constant and the method relies on the construction of a Lyapunov function. This Lyapunov function is a sum of two semi-positive definite functions, which are determined by using Lie algebraic methods and Frobenius theorem. The constructed Lyapunov function decreases in an average sense.","PeriodicalId":286459,"journal":{"name":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Discontinuous feedback stabilization of a hopping robot in flight phase\",\"authors\":\"F. Rehman\",\"doi\":\"10.1109/INMIC.2001.995335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic approach to the construction of feedback control for set point stabilization is presented for a model of a hopping robot in flight phase. The feedback controls are piece-wise constant and the method relies on the construction of a Lyapunov function. This Lyapunov function is a sum of two semi-positive definite functions, which are determined by using Lie algebraic methods and Frobenius theorem. The constructed Lyapunov function decreases in an average sense.\",\"PeriodicalId\":286459,\"journal\":{\"name\":\"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2001.995335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2001.995335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对跳跃机器人的飞行阶段模型,提出了一种系统的反馈控制方法。反馈控制是分段常数,该方法依赖于李雅普诺夫函数的构造。该Lyapunov函数是两个半正定函数的和,由李代数方法和Frobenius定理确定。构造的李雅普诺夫函数在平均意义上减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous feedback stabilization of a hopping robot in flight phase
A systematic approach to the construction of feedback control for set point stabilization is presented for a model of a hopping robot in flight phase. The feedback controls are piece-wise constant and the method relies on the construction of a Lyapunov function. This Lyapunov function is a sum of two semi-positive definite functions, which are determined by using Lie algebraic methods and Frobenius theorem. The constructed Lyapunov function decreases in an average sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信