基于立体视觉的城市交通障碍物检测

Yingping Huang
{"title":"基于立体视觉的城市交通障碍物检测","authors":"Yingping Huang","doi":"10.1109/ITSC.2005.1520121","DOIUrl":null,"url":null,"abstract":"Obstacle detection and classification in complex urban area are highly demanding, but desirable for protection of vulnerable road users. This paper presents an in-vehicle stereovision-based system for short-range object detection. The basic principles have been given for designing the optical parameters of the system such as baseline, angular coverage, spatial resolution and dynamic range. A novel feature-indexed approach has been proposed to achieve fast and quality stereo matching. Consequently, the depth map is generated by reconstructing all image points into the world coordinates. Object segmentation based on the depth map makes use of 3-dimensional information of the objects, and enables reliable and robust object detection.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Obstacle detection in urban traffic using stereovision\",\"authors\":\"Yingping Huang\",\"doi\":\"10.1109/ITSC.2005.1520121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstacle detection and classification in complex urban area are highly demanding, but desirable for protection of vulnerable road users. This paper presents an in-vehicle stereovision-based system for short-range object detection. The basic principles have been given for designing the optical parameters of the system such as baseline, angular coverage, spatial resolution and dynamic range. A novel feature-indexed approach has been proposed to achieve fast and quality stereo matching. Consequently, the depth map is generated by reconstructing all image points into the world coordinates. Object segmentation based on the depth map makes use of 3-dimensional information of the objects, and enables reliable and robust object detection.\",\"PeriodicalId\":153203,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2005.1520121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在复杂的城市环境中,障碍物检测和分类的要求很高,但对弱势道路使用者的保护是必要的。提出了一种基于车载立体视觉的近距离目标检测系统。给出了系统的基线、角覆盖、空间分辨率和动态范围等光学参数设计的基本原则。为了实现快速、高质量的立体匹配,提出了一种新的特征索引方法。因此,通过将所有图像点重构为世界坐标来生成深度图。基于深度图的目标分割利用了目标的三维信息,实现了可靠、鲁棒的目标检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obstacle detection in urban traffic using stereovision
Obstacle detection and classification in complex urban area are highly demanding, but desirable for protection of vulnerable road users. This paper presents an in-vehicle stereovision-based system for short-range object detection. The basic principles have been given for designing the optical parameters of the system such as baseline, angular coverage, spatial resolution and dynamic range. A novel feature-indexed approach has been proposed to achieve fast and quality stereo matching. Consequently, the depth map is generated by reconstructing all image points into the world coordinates. Object segmentation based on the depth map makes use of 3-dimensional information of the objects, and enables reliable and robust object detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信