基于声纳的机器人避障方法*

Yangfan Zhang, Jian Zhang
{"title":"基于声纳的机器人避障方法*","authors":"Yangfan Zhang, Jian Zhang","doi":"10.1109/ICCAE55086.2022.9762446","DOIUrl":null,"url":null,"abstract":"In this paper, an obstacle avoidance method for undersea unmanned vehicle (UUV) is proposed. The sensors employed are sonar-based ones, as the other type of sensors, like visual-based sensors, radar-based sensors are not viable for the underwater environments. The deformation of the obstacles has been observed and learnt with the combination of Back Propagation Neural Network (BPNN), and the coordinate position of the obstacle is predicted by the robot. The navigation algorithm applied could navigate the UUV avoiding collisions with the obstacles. The simulation results which could demonstrate the validation of our proposed algorithm are also presented, which are implemented by Matlab.","PeriodicalId":294641,"journal":{"name":"2022 14th International Conference on Computer and Automation Engineering (ICCAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Obstacle Avoidance Method for Sonar-based Robots Avoiding Shape Changeable Obstacles*\",\"authors\":\"Yangfan Zhang, Jian Zhang\",\"doi\":\"10.1109/ICCAE55086.2022.9762446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an obstacle avoidance method for undersea unmanned vehicle (UUV) is proposed. The sensors employed are sonar-based ones, as the other type of sensors, like visual-based sensors, radar-based sensors are not viable for the underwater environments. The deformation of the obstacles has been observed and learnt with the combination of Back Propagation Neural Network (BPNN), and the coordinate position of the obstacle is predicted by the robot. The navigation algorithm applied could navigate the UUV avoiding collisions with the obstacles. The simulation results which could demonstrate the validation of our proposed algorithm are also presented, which are implemented by Matlab.\",\"PeriodicalId\":294641,\"journal\":{\"name\":\"2022 14th International Conference on Computer and Automation Engineering (ICCAE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Computer and Automation Engineering (ICCAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAE55086.2022.9762446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computer and Automation Engineering (ICCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAE55086.2022.9762446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种水下无人潜航器避障方法。所采用的传感器是基于声纳的传感器,因为其他类型的传感器,如基于视觉的传感器,基于雷达的传感器在水下环境中是不可行的。结合反向传播神经网络(BPNN)对障碍物的变形进行观察和学习,并预测障碍物的坐标位置。所应用的导航算法可以使无人潜航器避免与障碍物发生碰撞。最后给出了仿真结果,验证了算法的有效性,并用Matlab实现了该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Obstacle Avoidance Method for Sonar-based Robots Avoiding Shape Changeable Obstacles*
In this paper, an obstacle avoidance method for undersea unmanned vehicle (UUV) is proposed. The sensors employed are sonar-based ones, as the other type of sensors, like visual-based sensors, radar-based sensors are not viable for the underwater environments. The deformation of the obstacles has been observed and learnt with the combination of Back Propagation Neural Network (BPNN), and the coordinate position of the obstacle is predicted by the robot. The navigation algorithm applied could navigate the UUV avoiding collisions with the obstacles. The simulation results which could demonstrate the validation of our proposed algorithm are also presented, which are implemented by Matlab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信