28纳米CMOS模拟脉冲神经元

Marwan Besrour, Sarra Zitoun, Jacob Lavoie, Takwa Omrani, K. Koua, Maher Benhouria, Mounir Boukadoum, R. Fontaine
{"title":"28纳米CMOS模拟脉冲神经元","authors":"Marwan Besrour, Sarra Zitoun, Jacob Lavoie, Takwa Omrani, K. Koua, Maher Benhouria, Mounir Boukadoum, R. Fontaine","doi":"10.1109/NEWCAS52662.2022.9842088","DOIUrl":null,"url":null,"abstract":"Traditional computer clusters are facing a significant limitation as a result of the big data revolution. We need efficient edge devices to bring the power of machine learning algorithms from power-hungry room servers to mobile consumer platforms. Neuromorphic engineering is a promising avenue for developing the next generation of edge devices that combine high computing capabilities with low power consumption in a small form factor. This paper shows the proof of concept of an analog/mixed-signal CMOS neuromorphic system on a chip (NeuroSoC) by presenting a low-power design of a leaky integrate-and-fire (LIF) neuron. The design uses eight transistors and two capacitors for low complexity and potential to lead to very dense systems. The proposed model consumes 1.2 fJ/spike and occupies an active area of 6.73 µm by 5.09 µm when implemented in 28 nm CMOS. The maximum spiking frequency is 343 kHz.","PeriodicalId":198335,"journal":{"name":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analog Spiking Neuron in 28 nm CMOS\",\"authors\":\"Marwan Besrour, Sarra Zitoun, Jacob Lavoie, Takwa Omrani, K. Koua, Maher Benhouria, Mounir Boukadoum, R. Fontaine\",\"doi\":\"10.1109/NEWCAS52662.2022.9842088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional computer clusters are facing a significant limitation as a result of the big data revolution. We need efficient edge devices to bring the power of machine learning algorithms from power-hungry room servers to mobile consumer platforms. Neuromorphic engineering is a promising avenue for developing the next generation of edge devices that combine high computing capabilities with low power consumption in a small form factor. This paper shows the proof of concept of an analog/mixed-signal CMOS neuromorphic system on a chip (NeuroSoC) by presenting a low-power design of a leaky integrate-and-fire (LIF) neuron. The design uses eight transistors and two capacitors for low complexity and potential to lead to very dense systems. The proposed model consumes 1.2 fJ/spike and occupies an active area of 6.73 µm by 5.09 µm when implemented in 28 nm CMOS. The maximum spiking frequency is 343 kHz.\",\"PeriodicalId\":198335,\"journal\":{\"name\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS52662.2022.9842088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS52662.2022.9842088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于大数据革命,传统的计算机集群面临着很大的限制。我们需要高效的边缘设备,将机器学习算法的力量从耗电的房间服务器带到移动消费者平台。神经形态工程是开发下一代边缘设备的一个很有前途的途径,该设备将高计算能力与小尺寸的低功耗结合在一起。本文展示了模拟/混合信号CMOS神经形态系统在片上(NeuroSoC)的概念证明,提出了一种低功耗设计的泄漏集成点火(LIF)神经元。该设计使用8个晶体管和2个电容器,以降低复杂性,并有可能导致非常密集的系统。当在28 nm CMOS中实现时,所提出的模型消耗1.2 fJ/尖峰,占用6.73µm × 5.09µm的有效面积。最大尖峰频率为343 kHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analog Spiking Neuron in 28 nm CMOS
Traditional computer clusters are facing a significant limitation as a result of the big data revolution. We need efficient edge devices to bring the power of machine learning algorithms from power-hungry room servers to mobile consumer platforms. Neuromorphic engineering is a promising avenue for developing the next generation of edge devices that combine high computing capabilities with low power consumption in a small form factor. This paper shows the proof of concept of an analog/mixed-signal CMOS neuromorphic system on a chip (NeuroSoC) by presenting a low-power design of a leaky integrate-and-fire (LIF) neuron. The design uses eight transistors and two capacitors for low complexity and potential to lead to very dense systems. The proposed model consumes 1.2 fJ/spike and occupies an active area of 6.73 µm by 5.09 µm when implemented in 28 nm CMOS. The maximum spiking frequency is 343 kHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信