通过元启发式和用户负载预测实现大型无线网络的资源分配

Lucas Frank, Lorenzo Carnevale, Antonino Galletta, Massimo Villari, A. Vieira, E. Silva
{"title":"通过元启发式和用户负载预测实现大型无线网络的资源分配","authors":"Lucas Frank, Lorenzo Carnevale, Antonino Galletta, Massimo Villari, A. Vieira, E. Silva","doi":"10.5753/courb.2022.223452","DOIUrl":null,"url":null,"abstract":"Com o aumento significativo de usuários móveis, a busca pelo gerenciamento de recursos tornou-se essencial. Essa gerência deve visar atender à cobertura do sinal, mas, principalmente, manter o Acordo de Nível de Serviço desejado, independentemente do número de usuários conectados. Assim, propomos a utilização de quatro modelos de predição aplicado ao número de usuários conectados em uma rede sem fio. A partir dessas previsões, os recursos de rede podem ser alocados adequadamente. Investigamos o uso de Otimização de Enxame de Partículas e Algoritmo Genético para hiperparametrizar um Perceptron Multicamadas e uma Árvore de Decisão. Avaliamos nossa proposta utilizando dados reais de rede sem fio com mais de 20 mil usuários. Como resultado, obtivemos uma precisão média de 94,80%, melhorando consideravelmente a utilização de recursos da rede e atendendo um nível de acordo de serviço de 95%.","PeriodicalId":174255,"journal":{"name":"Anais do VI Workshop de Computação Urbana (CoUrb 2022)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alocação de Recursos em Redes Sem Fio de Grande Porte por meio de Meta-Heurísticas e Predição da Carga de Usuários\",\"authors\":\"Lucas Frank, Lorenzo Carnevale, Antonino Galletta, Massimo Villari, A. Vieira, E. Silva\",\"doi\":\"10.5753/courb.2022.223452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Com o aumento significativo de usuários móveis, a busca pelo gerenciamento de recursos tornou-se essencial. Essa gerência deve visar atender à cobertura do sinal, mas, principalmente, manter o Acordo de Nível de Serviço desejado, independentemente do número de usuários conectados. Assim, propomos a utilização de quatro modelos de predição aplicado ao número de usuários conectados em uma rede sem fio. A partir dessas previsões, os recursos de rede podem ser alocados adequadamente. Investigamos o uso de Otimização de Enxame de Partículas e Algoritmo Genético para hiperparametrizar um Perceptron Multicamadas e uma Árvore de Decisão. Avaliamos nossa proposta utilizando dados reais de rede sem fio com mais de 20 mil usuários. Como resultado, obtivemos uma precisão média de 94,80%, melhorando consideravelmente a utilização de recursos da rede e atendendo um nível de acordo de serviço de 95%.\",\"PeriodicalId\":174255,\"journal\":{\"name\":\"Anais do VI Workshop de Computação Urbana (CoUrb 2022)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do VI Workshop de Computação Urbana (CoUrb 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/courb.2022.223452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VI Workshop de Computação Urbana (CoUrb 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/courb.2022.223452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着移动用户的显著增加,资源管理变得至关重要。这种管理的目标应该是满足信号覆盖,但主要是保持所需的服务水平协议,而不管连接的用户数量。因此,我们提出了四种应用于无线网络中连接用户数量的预测模型。从这些预测中,可以适当地分配网络资源。我们研究了粒子群优化和遗传算法来超参数化多层感知器和决策树。我们使用来自超过2万用户的真实无线网络数据来评估我们的建议。因此,我们获得了94.80%的平均准确率,大大提高了网络资源利用率,满足了95%的服务协议水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alocação de Recursos em Redes Sem Fio de Grande Porte por meio de Meta-Heurísticas e Predição da Carga de Usuários
Com o aumento significativo de usuários móveis, a busca pelo gerenciamento de recursos tornou-se essencial. Essa gerência deve visar atender à cobertura do sinal, mas, principalmente, manter o Acordo de Nível de Serviço desejado, independentemente do número de usuários conectados. Assim, propomos a utilização de quatro modelos de predição aplicado ao número de usuários conectados em uma rede sem fio. A partir dessas previsões, os recursos de rede podem ser alocados adequadamente. Investigamos o uso de Otimização de Enxame de Partículas e Algoritmo Genético para hiperparametrizar um Perceptron Multicamadas e uma Árvore de Decisão. Avaliamos nossa proposta utilizando dados reais de rede sem fio com mais de 20 mil usuários. Como resultado, obtivemos uma precisão média de 94,80%, melhorando consideravelmente a utilização de recursos da rede e atendendo um nível de acordo de serviço de 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信