{"title":"少突胶质细胞来源髓磷脂在视觉系统可塑性和生成中的双重作用","authors":"H. R. Mendonça, S. Espírito-Santo, A. M. Martinez","doi":"10.4172/2157-7013.1000228","DOIUrl":null,"url":null,"abstract":"Oligodendrocytes are the cell type responsible to produce central nervous system (CNS) myelin sheaths. These sheaths consist of internodes of thin bilayers of oligodendrocyte plasma membrane concentrically wrapped around the axon, producing high-resistance/ low-capacitance regions, flanked by low-resistance/high-capacitance unwrapped segments, called nodes of Ranvier. This organization greatly increases action potential conduction velocity, being crucial for normal nervous system physiology [1].","PeriodicalId":150547,"journal":{"name":"Journal of Cell Science and Therapy","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual Role of Oligodendrocyte-Derived Myelin in Visual System Plasticity andRegeneration\",\"authors\":\"H. R. Mendonça, S. Espírito-Santo, A. M. Martinez\",\"doi\":\"10.4172/2157-7013.1000228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oligodendrocytes are the cell type responsible to produce central nervous system (CNS) myelin sheaths. These sheaths consist of internodes of thin bilayers of oligodendrocyte plasma membrane concentrically wrapped around the axon, producing high-resistance/ low-capacitance regions, flanked by low-resistance/high-capacitance unwrapped segments, called nodes of Ranvier. This organization greatly increases action potential conduction velocity, being crucial for normal nervous system physiology [1].\",\"PeriodicalId\":150547,\"journal\":{\"name\":\"Journal of Cell Science and Therapy\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Science and Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7013.1000228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Science and Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7013.1000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual Role of Oligodendrocyte-Derived Myelin in Visual System Plasticity andRegeneration
Oligodendrocytes are the cell type responsible to produce central nervous system (CNS) myelin sheaths. These sheaths consist of internodes of thin bilayers of oligodendrocyte plasma membrane concentrically wrapped around the axon, producing high-resistance/ low-capacitance regions, flanked by low-resistance/high-capacitance unwrapped segments, called nodes of Ranvier. This organization greatly increases action potential conduction velocity, being crucial for normal nervous system physiology [1].