利用高斯马尔可夫随机场模拟优化的计算方法

Mark Semelhago, B. Nelson, A. Wächter, Eunhye Song
{"title":"利用高斯马尔可夫随机场模拟优化的计算方法","authors":"Mark Semelhago, B. Nelson, A. Wächter, Eunhye Song","doi":"10.1109/WSC.2017.8247941","DOIUrl":null,"url":null,"abstract":"There has been recent interest, and significant success, in adapting and extending ideas from statistical learning via Gaussian process (GP) regression to optimization via simulation (OvS) problems. At the heart of all such methods is a GP representing knowledge about the objective function whose conditional distribution is updated as more of the feasible region is explored. Calculating the conditional distribution requires inverting a large, dense covariance matrix, and this is the primary bottleneck for applying GP learning to large-scale OvS problems. If the GP is a Gaussian Markov Random Field (GMRF), then the precision matrix (inverse of the covariance matrix) can be constructed to be sparse. In this paper we show how to exploit this sparse-matrix structure to extend the reach of OvS based on GMRF learning for discrete-decision-variable problems.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computational methods for optimization via simulation using Gaussian Markov Random Fields\",\"authors\":\"Mark Semelhago, B. Nelson, A. Wächter, Eunhye Song\",\"doi\":\"10.1109/WSC.2017.8247941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been recent interest, and significant success, in adapting and extending ideas from statistical learning via Gaussian process (GP) regression to optimization via simulation (OvS) problems. At the heart of all such methods is a GP representing knowledge about the objective function whose conditional distribution is updated as more of the feasible region is explored. Calculating the conditional distribution requires inverting a large, dense covariance matrix, and this is the primary bottleneck for applying GP learning to large-scale OvS problems. If the GP is a Gaussian Markov Random Field (GMRF), then the precision matrix (inverse of the covariance matrix) can be constructed to be sparse. In this paper we show how to exploit this sparse-matrix structure to extend the reach of OvS based on GMRF learning for discrete-decision-variable problems.\",\"PeriodicalId\":145780,\"journal\":{\"name\":\"2017 Winter Simulation Conference (WSC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2017.8247941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

所有这些方法的核心是一个GP,它表示关于目标函数的知识,目标函数的条件分布随着探索的可行区域的增加而更新。计算条件分布需要反转一个大而密集的协方差矩阵,这是将GP学习应用于大规模OvS问题的主要瓶颈。如果GP是高斯马尔可夫随机场(GMRF),则精度矩阵(协方差矩阵的逆)可以构造为稀疏矩阵。在本文中,我们展示了如何利用这种稀疏矩阵结构来扩展基于GMRF学习的离散决策变量问题的OvS的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational methods for optimization via simulation using Gaussian Markov Random Fields
There has been recent interest, and significant success, in adapting and extending ideas from statistical learning via Gaussian process (GP) regression to optimization via simulation (OvS) problems. At the heart of all such methods is a GP representing knowledge about the objective function whose conditional distribution is updated as more of the feasible region is explored. Calculating the conditional distribution requires inverting a large, dense covariance matrix, and this is the primary bottleneck for applying GP learning to large-scale OvS problems. If the GP is a Gaussian Markov Random Field (GMRF), then the precision matrix (inverse of the covariance matrix) can be constructed to be sparse. In this paper we show how to exploit this sparse-matrix structure to extend the reach of OvS based on GMRF learning for discrete-decision-variable problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信