用于存储单元的圆柱形环绕浮栅MOSFET (S-FGMOSFET)基于电荷的紧凑建模

A. Hamzah, Z. Johari, R. Ismail
{"title":"用于存储单元的圆柱形环绕浮栅MOSFET (S-FGMOSFET)基于电荷的紧凑建模","authors":"A. Hamzah, Z. Johari, R. Ismail","doi":"10.1109/SMELEC.2016.7573615","DOIUrl":null,"url":null,"abstract":"A charge-based compact model of the long-channel cylindrical surrounding-floating gate (S-FG) MOSFETs for memory cell application is presented. The compact model is based on an accurate extraction of floating gate potential using charge balance model and solving the mobile charge density at the source and drain ends using the unified charge control model (UCCM). The drain-current relation is obtained from Pao-Sah's dual integral, which is expressed as a function of inversion charge at the source and drain end. The compact model for the floating gate potential and its transfer characteristics have been extensively verified with numerical simulations at various bias potentials and floating gate charges in all operating regions.","PeriodicalId":169983,"journal":{"name":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A charge-based compact modeling of cylindrical surrounding-floating gate MOSFET (S-FGMOSFET) for memory cell application\",\"authors\":\"A. Hamzah, Z. Johari, R. Ismail\",\"doi\":\"10.1109/SMELEC.2016.7573615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A charge-based compact model of the long-channel cylindrical surrounding-floating gate (S-FG) MOSFETs for memory cell application is presented. The compact model is based on an accurate extraction of floating gate potential using charge balance model and solving the mobile charge density at the source and drain ends using the unified charge control model (UCCM). The drain-current relation is obtained from Pao-Sah's dual integral, which is expressed as a function of inversion charge at the source and drain end. The compact model for the floating gate potential and its transfer characteristics have been extensively verified with numerical simulations at various bias potentials and floating gate charges in all operating regions.\",\"PeriodicalId\":169983,\"journal\":{\"name\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2016.7573615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2016.7573615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于存储单元的长沟道圆柱型绕浮栅(S-FG) mosfet的电荷紧凑模型。该模型基于电荷平衡模型精确提取浮栅电势,统一电荷控制模型(UCCM)求解源极和漏极移动电荷密度。漏极-电流关系由Pao-Sah的对偶积分得到,其表示为源极和漏极端反转电荷的函数。在各种偏置电位和所有工作区域的浮栅电荷下,对浮栅电势的紧凑模型及其传递特性进行了广泛的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A charge-based compact modeling of cylindrical surrounding-floating gate MOSFET (S-FGMOSFET) for memory cell application
A charge-based compact model of the long-channel cylindrical surrounding-floating gate (S-FG) MOSFETs for memory cell application is presented. The compact model is based on an accurate extraction of floating gate potential using charge balance model and solving the mobile charge density at the source and drain ends using the unified charge control model (UCCM). The drain-current relation is obtained from Pao-Sah's dual integral, which is expressed as a function of inversion charge at the source and drain end. The compact model for the floating gate potential and its transfer characteristics have been extensively verified with numerical simulations at various bias potentials and floating gate charges in all operating regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信