图像分数阶微分算法的比较

M. Paskas
{"title":"图像分数阶微分算法的比较","authors":"M. Paskas","doi":"10.1109/TELFOR56187.2022.9983676","DOIUrl":null,"url":null,"abstract":"This paper brings analysis of frequently used algorithms for calculation of the fractional gradients of images. The measures used for the quantitative assessment of the considered algorithms are signal-to-noise ratio and effective average gradient. The results obtained on standard natural images show a distinctive trend in behavior over all images and superior algorithms for certain orders of differentiation. Both measures show similar behavior for the lower orders of differentiation whereas the higher orders of differentiation lead to different treatment of the considered algorithms.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Algorithms for Fractional Differentiation of Images\",\"authors\":\"M. Paskas\",\"doi\":\"10.1109/TELFOR56187.2022.9983676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper brings analysis of frequently used algorithms for calculation of the fractional gradients of images. The measures used for the quantitative assessment of the considered algorithms are signal-to-noise ratio and effective average gradient. The results obtained on standard natural images show a distinctive trend in behavior over all images and superior algorithms for certain orders of differentiation. Both measures show similar behavior for the lower orders of differentiation whereas the higher orders of differentiation lead to different treatment of the considered algorithms.\",\"PeriodicalId\":277553,\"journal\":{\"name\":\"2022 30th Telecommunications Forum (TELFOR)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR56187.2022.9983676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了常用的计算图像分数梯度的算法。用于定量评估所考虑的算法的措施是信噪比和有效平均梯度。在标准自然图像上获得的结果表明,在所有图像上的行为都有明显的趋势,并且在某些阶数的微分上具有优越的算法。对于低阶微分,两种度量都显示出相似的行为,而高阶微分导致对所考虑的算法的不同处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Algorithms for Fractional Differentiation of Images
This paper brings analysis of frequently used algorithms for calculation of the fractional gradients of images. The measures used for the quantitative assessment of the considered algorithms are signal-to-noise ratio and effective average gradient. The results obtained on standard natural images show a distinctive trend in behavior over all images and superior algorithms for certain orders of differentiation. Both measures show similar behavior for the lower orders of differentiation whereas the higher orders of differentiation lead to different treatment of the considered algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信