多系统识别的分组稀疏LMS

Lei Yu, Chen Wei, G. Zheng
{"title":"多系统识别的分组稀疏LMS","authors":"Lei Yu, Chen Wei, G. Zheng","doi":"10.1109/EUSIPCO.2015.7362672","DOIUrl":null,"url":null,"abstract":"Armed with structures, group sparsity can be exploited to extraordinarily improve the performance of adaptive estimation. In this paper, a group sparse regularized least-mean-square (LMS) algorithm is proposed to cope with the identification problems for multiple/multi-channel systems. In particular, the coefficients of impulse response function for each system are assumed to be sparse. Then, the dependencies between multiple systems are considered, where the coefficients of impulse responses of each system share the same pattern. An iterative online algorithm is proposed via proximal splitting method. At the end, simulations are carried out to verify the superiority of our proposed algorithm to the state-of-the-art algorithms.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Group sparse LMS for multiple system identification\",\"authors\":\"Lei Yu, Chen Wei, G. Zheng\",\"doi\":\"10.1109/EUSIPCO.2015.7362672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Armed with structures, group sparsity can be exploited to extraordinarily improve the performance of adaptive estimation. In this paper, a group sparse regularized least-mean-square (LMS) algorithm is proposed to cope with the identification problems for multiple/multi-channel systems. In particular, the coefficients of impulse response function for each system are assumed to be sparse. Then, the dependencies between multiple systems are considered, where the coefficients of impulse responses of each system share the same pattern. An iterative online algorithm is proposed via proximal splitting method. At the end, simulations are carried out to verify the superiority of our proposed algorithm to the state-of-the-art algorithms.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

有了结构,群稀疏性可以极大地提高自适应估计的性能。本文提出了一种群稀疏正则化最小均方(LMS)算法来解决多信道系统的识别问题。特别地,假定每个系统的脉冲响应函数的系数都是稀疏的。然后,考虑了多系统之间的依赖关系,其中每个系统的脉冲响应系数具有相同的模式。提出了一种基于近端分裂的在线迭代算法。最后,通过仿真验证了本文算法相对于现有算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group sparse LMS for multiple system identification
Armed with structures, group sparsity can be exploited to extraordinarily improve the performance of adaptive estimation. In this paper, a group sparse regularized least-mean-square (LMS) algorithm is proposed to cope with the identification problems for multiple/multi-channel systems. In particular, the coefficients of impulse response function for each system are assumed to be sparse. Then, the dependencies between multiple systems are considered, where the coefficients of impulse responses of each system share the same pattern. An iterative online algorithm is proposed via proximal splitting method. At the end, simulations are carried out to verify the superiority of our proposed algorithm to the state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信