基于共轭先验的广义伽玛分布的贝叶斯推断

Mohamed I Riffi, Hanin S. El-Masri
{"title":"基于共轭先验的广义伽玛分布的贝叶斯推断","authors":"Mohamed I Riffi, Hanin S. El-Masri","doi":"10.33976/iugns.28.2/2020/1","DOIUrl":null,"url":null,"abstract":"This paper focuses on the three-parameter generalized gamma distribution and uses Bayesian techniques to estimate its parameters. Many authors con-sidered estimating the parameters of the generalized gamma distribution in a Bayesian framework using Jeffrey’s priors. Others used different loss functions and the least squares approach. This study uses Bayesian techniques to estimate the three-parameter generalized gamma distribution by using conjugate priors. The random Metropolis algorithm is used to simulate the Bayesian estimates of the three parameters. Then these estimates are compared to the maximum like-lihood estimates using the mean error through simulation. It has been shown in this paper that the obtained estimates using this approach is more accurate than the traditional methods of estimation such as the Maximum likelihood method. The same approach is then used to estimate the parameters of mixtures of the generalized gamma parameters using conjugate priors.","PeriodicalId":440576,"journal":{"name":"IUG Journal of Natural Studies","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Inference on the Generalized Gamma Distribution using Conjugate Priors\",\"authors\":\"Mohamed I Riffi, Hanin S. El-Masri\",\"doi\":\"10.33976/iugns.28.2/2020/1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the three-parameter generalized gamma distribution and uses Bayesian techniques to estimate its parameters. Many authors con-sidered estimating the parameters of the generalized gamma distribution in a Bayesian framework using Jeffrey’s priors. Others used different loss functions and the least squares approach. This study uses Bayesian techniques to estimate the three-parameter generalized gamma distribution by using conjugate priors. The random Metropolis algorithm is used to simulate the Bayesian estimates of the three parameters. Then these estimates are compared to the maximum like-lihood estimates using the mean error through simulation. It has been shown in this paper that the obtained estimates using this approach is more accurate than the traditional methods of estimation such as the Maximum likelihood method. The same approach is then used to estimate the parameters of mixtures of the generalized gamma parameters using conjugate priors.\",\"PeriodicalId\":440576,\"journal\":{\"name\":\"IUG Journal of Natural Studies\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUG Journal of Natural Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33976/iugns.28.2/2020/1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUG Journal of Natural Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33976/iugns.28.2/2020/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究三参数广义伽玛分布,并利用贝叶斯技术对其参数进行估计。许多作者考虑在贝叶斯框架中使用杰弗里先验估计广义伽马分布的参数。其他人则使用不同的损失函数和最小二乘法。本研究利用贝叶斯技术,利用共轭先验估计三参数广义伽玛分布。采用随机Metropolis算法模拟这三个参数的贝叶斯估计。然后,通过模拟将这些估计与使用平均误差的最大似然估计进行比较。本文的研究表明,用这种方法得到的估计比传统的估计方法(如极大似然法)更准确。然后使用相同的方法使用共轭先验估计广义伽玛参数混合物的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Inference on the Generalized Gamma Distribution using Conjugate Priors
This paper focuses on the three-parameter generalized gamma distribution and uses Bayesian techniques to estimate its parameters. Many authors con-sidered estimating the parameters of the generalized gamma distribution in a Bayesian framework using Jeffrey’s priors. Others used different loss functions and the least squares approach. This study uses Bayesian techniques to estimate the three-parameter generalized gamma distribution by using conjugate priors. The random Metropolis algorithm is used to simulate the Bayesian estimates of the three parameters. Then these estimates are compared to the maximum like-lihood estimates using the mean error through simulation. It has been shown in this paper that the obtained estimates using this approach is more accurate than the traditional methods of estimation such as the Maximum likelihood method. The same approach is then used to estimate the parameters of mixtures of the generalized gamma parameters using conjugate priors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信