{"title":"整数的基数表示的基本数字集","authors":"D. Matula","doi":"10.1109/ARITH.1978.6155789","DOIUrl":null,"url":null,"abstract":"Let Z denote the set of integers. A digit set D ⊂ Z is basic for base β ∊ Z if the set of polynomials {d<inf>m</inf>β<sup>m</sup> + d<inf>m−1</inf> + … + d<inf>1</inf> β+d<inf>0</inf> | d<inf>I</inf> ∊ D} contains a unique representation for every n ε Z. We give necessary and sufficient conditions for D to be basic for β. We exhibit efficient procedures for verifying that D is basic for β, and for computing the representation of any n ε Z when a representation exists. There exist D, & with D basic for β where max {|d| | d ∊ D} > |β|, and more generally, an infinite class of basic digit sets is shown to exist for every base β with |β| ≥ 3. The natural extension to infinite precision radix representation using basic digit sets is considered and a summary of results is presented.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basic digit sets for radix representation of the integers\",\"authors\":\"D. Matula\",\"doi\":\"10.1109/ARITH.1978.6155789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Z denote the set of integers. A digit set D ⊂ Z is basic for base β ∊ Z if the set of polynomials {d<inf>m</inf>β<sup>m</sup> + d<inf>m−1</inf> + … + d<inf>1</inf> β+d<inf>0</inf> | d<inf>I</inf> ∊ D} contains a unique representation for every n ε Z. We give necessary and sufficient conditions for D to be basic for β. We exhibit efficient procedures for verifying that D is basic for β, and for computing the representation of any n ε Z when a representation exists. There exist D, & with D basic for β where max {|d| | d ∊ D} > |β|, and more generally, an infinite class of basic digit sets is shown to exist for every base β with |β| ≥ 3. The natural extension to infinite precision radix representation using basic digit sets is considered and a summary of results is presented.\",\"PeriodicalId\":443215,\"journal\":{\"name\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1978.6155789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设Z表示整数集。如果多项式集{dmβm + dm−1 +…+ d1 β+d0 | dI D}包含每一个n ε Z的唯一表示,则数字集D Z是基的β Z,则D Z是基的β Z。我们给出了D是基的β Z的充分必要条件。我们展示了有效的程序来验证D是β的基本函数,并在存在表示时计算任何n ε Z的表示。当max {| D | D D} > |β|时,对于β存在D, &与D基本集,更一般地说,对于每一个基底β,且|β|≥3,都存在一个无限类的基本位数集。讨论了用基本数集表示无限精度基数的自然推广,并总结了一些结果。
Basic digit sets for radix representation of the integers
Let Z denote the set of integers. A digit set D ⊂ Z is basic for base β ∊ Z if the set of polynomials {dmβm + dm−1 + … + d1 β+d0 | dI ∊ D} contains a unique representation for every n ε Z. We give necessary and sufficient conditions for D to be basic for β. We exhibit efficient procedures for verifying that D is basic for β, and for computing the representation of any n ε Z when a representation exists. There exist D, & with D basic for β where max {|d| | d ∊ D} > |β|, and more generally, an infinite class of basic digit sets is shown to exist for every base β with |β| ≥ 3. The natural extension to infinite precision radix representation using basic digit sets is considered and a summary of results is presented.