基于时间窗的LS-SVM在线优化建模

Yanfei Zhu, Zhong-yuan Mao
{"title":"基于时间窗的LS-SVM在线优化建模","authors":"Yanfei Zhu, Zhong-yuan Mao","doi":"10.1109/ICIT.2004.1490753","DOIUrl":null,"url":null,"abstract":"Least squares support vector machines (LS-SVM) is a perfect model-learning algorithm with good accuracy and high speed. Previously, many researches have been done on this algorithm in static modeling problems, but not in dynamic ones. In this paper, we try to solve these problems. Through researches, we propose a new kind of online modeling algorithm based on time window in LS-SVM and use it for modeling of complex nonlinear processes. The purpose of this paper is to show its powerful identification performances. The paper first presents the main mechanism of LS-SVM, and then discusses the optimization algorithm of time window and describes the key action of Karush-Kuhn-Tucker (KKT) optimization condition to this algorithm. The current feature of the model has strong relationship with L updated data. KKT optimization condition decides whether to do the retraining at each updating procedure and avoids unnecessary recalculations. LS-SVM provides great help for increasing the speed during the online modeling. Finally, this algorithm is applied to solving a multivariable modeling problem of a typical complex process in calcination kiln. The simulation results show the good prospect of this algorithm on dynamic identifications of complex nonlinear processes.","PeriodicalId":136064,"journal":{"name":"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Online optimal modeling of LS-SVM based on time window\",\"authors\":\"Yanfei Zhu, Zhong-yuan Mao\",\"doi\":\"10.1109/ICIT.2004.1490753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Least squares support vector machines (LS-SVM) is a perfect model-learning algorithm with good accuracy and high speed. Previously, many researches have been done on this algorithm in static modeling problems, but not in dynamic ones. In this paper, we try to solve these problems. Through researches, we propose a new kind of online modeling algorithm based on time window in LS-SVM and use it for modeling of complex nonlinear processes. The purpose of this paper is to show its powerful identification performances. The paper first presents the main mechanism of LS-SVM, and then discusses the optimization algorithm of time window and describes the key action of Karush-Kuhn-Tucker (KKT) optimization condition to this algorithm. The current feature of the model has strong relationship with L updated data. KKT optimization condition decides whether to do the retraining at each updating procedure and avoids unnecessary recalculations. LS-SVM provides great help for increasing the speed during the online modeling. Finally, this algorithm is applied to solving a multivariable modeling problem of a typical complex process in calcination kiln. The simulation results show the good prospect of this algorithm on dynamic identifications of complex nonlinear processes.\",\"PeriodicalId\":136064,\"journal\":{\"name\":\"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2004.1490753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2004.1490753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

最小二乘支持向量机(LS-SVM)是一种精度高、速度快的模型学习算法。在此之前,该算法在静态建模问题上的研究较多,但在动态建模问题上的研究较少。在本文中,我们试图解决这些问题。通过研究,提出了一种基于时间窗的LS-SVM在线建模算法,并将其用于复杂非线性过程的建模。本文的目的是展示其强大的识别性能。本文首先介绍了LS-SVM的主要机制,然后讨论了时间窗的优化算法,并描述了KKT优化条件对该算法的关键作用。模型的当前特征与L更新数据有很强的关系。KKT优化条件决定了在每次更新过程中是否进行再训练,避免了不必要的重新计算。LS-SVM对提高在线建模速度有很大帮助。最后,将该算法应用于解决一个典型的煅烧窑复杂过程的多变量建模问题。仿真结果表明,该算法在复杂非线性过程的动态辨识方面具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online optimal modeling of LS-SVM based on time window
Least squares support vector machines (LS-SVM) is a perfect model-learning algorithm with good accuracy and high speed. Previously, many researches have been done on this algorithm in static modeling problems, but not in dynamic ones. In this paper, we try to solve these problems. Through researches, we propose a new kind of online modeling algorithm based on time window in LS-SVM and use it for modeling of complex nonlinear processes. The purpose of this paper is to show its powerful identification performances. The paper first presents the main mechanism of LS-SVM, and then discusses the optimization algorithm of time window and describes the key action of Karush-Kuhn-Tucker (KKT) optimization condition to this algorithm. The current feature of the model has strong relationship with L updated data. KKT optimization condition decides whether to do the retraining at each updating procedure and avoids unnecessary recalculations. LS-SVM provides great help for increasing the speed during the online modeling. Finally, this algorithm is applied to solving a multivariable modeling problem of a typical complex process in calcination kiln. The simulation results show the good prospect of this algorithm on dynamic identifications of complex nonlinear processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信