基于加权特征字典自适应贝叶斯压缩感知的超宽带信道估计

L. Qi, Lingling Wang, Z. Gan
{"title":"基于加权特征字典自适应贝叶斯压缩感知的超宽带信道估计","authors":"L. Qi, Lingling Wang, Z. Gan","doi":"10.1109/WCSP.2019.8927947","DOIUrl":null,"url":null,"abstract":"The sampling rate is too high to be accomplished for channel estimation in Ultra Wideband (UWB) Systems. Due to the sparse structure of UWB channels, compressive sensing (CS) is suitable for UWB channel estimation. Capitalizing on the sparseness of random UWB channels in the basis of eigen functions, eigen-dictionary has been adopted. While the contribution of every atoms to the reconstruction of the channels is different, we develop a weighted eigen-dictionary. Combining with Bayesian compressive sensing (BCS), the proposed Ultra Wideband channel estimation with weighted eigen dictionary could improve the estimation performance with lower sampling rate.","PeriodicalId":108635,"journal":{"name":"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra Wideband Channel Estimation Based on Adaptive Bayesian Compressive Sensing with Weighted Eigen Dictionary\",\"authors\":\"L. Qi, Lingling Wang, Z. Gan\",\"doi\":\"10.1109/WCSP.2019.8927947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sampling rate is too high to be accomplished for channel estimation in Ultra Wideband (UWB) Systems. Due to the sparse structure of UWB channels, compressive sensing (CS) is suitable for UWB channel estimation. Capitalizing on the sparseness of random UWB channels in the basis of eigen functions, eigen-dictionary has been adopted. While the contribution of every atoms to the reconstruction of the channels is different, we develop a weighted eigen-dictionary. Combining with Bayesian compressive sensing (BCS), the proposed Ultra Wideband channel estimation with weighted eigen dictionary could improve the estimation performance with lower sampling rate.\",\"PeriodicalId\":108635,\"journal\":{\"name\":\"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2019.8927947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2019.8927947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在超宽带(UWB)系统中,采样率过高,无法实现信道估计。由于UWB信道的稀疏结构,压缩感知(CS)适合于UWB信道估计。利用随机超宽带信道在特征函数基础上的稀疏性,采用了特征字典。虽然每个原子对通道重建的贡献不同,但我们开发了一个加权特征字典。结合贝叶斯压缩感知(BCS),提出了基于加权特征字典的超宽带信道估计方法,可以在较低的采样率下提高估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra Wideband Channel Estimation Based on Adaptive Bayesian Compressive Sensing with Weighted Eigen Dictionary
The sampling rate is too high to be accomplished for channel estimation in Ultra Wideband (UWB) Systems. Due to the sparse structure of UWB channels, compressive sensing (CS) is suitable for UWB channel estimation. Capitalizing on the sparseness of random UWB channels in the basis of eigen functions, eigen-dictionary has been adopted. While the contribution of every atoms to the reconstruction of the channels is different, we develop a weighted eigen-dictionary. Combining with Bayesian compressive sensing (BCS), the proposed Ultra Wideband channel estimation with weighted eigen dictionary could improve the estimation performance with lower sampling rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信